Advertisement

Recognition of Plant Leaves Using Support Vector Machine

  • Qing-Kui Man
  • Chun-Hou Zheng
  • Xiao-Feng Wang
  • Feng-Yan Lin
Part of the Communications in Computer and Information Science book series (CCIS, volume 15)

Abstract

A method using both color and texture feature to recognize plant leaf image is proposed in this paper. After image preprocessing, color feature and texture feature plant images are obtained, and then support vector machine (SVM) classifier is trained and used for plant images recognition. Experimental results show that using both color feature and texture feature to recognize plant image is possible, and the accuracy of recognition is fascinating.

Keywords

Support vector machine (SVM) Image segmentation Digital wavelet transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, X.F., Du, J.X., Zhang, G.J.: Recognition of Leaf Images Based on Shape Features Using a Hypersphere Classifier. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 87–96. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Han, J.H., Huang, D.S., Lok, T.M., Lyu, M.R.: A Novel Image Retrieval System Based on BP Neural Network. In: The 2005 International Joint Conference on Neural Networks (IJCNN 2005), Montreal, Quebec, Canada, vol. 4, pp. 2561–2564 (2005)Google Scholar
  3. 3.
    Liu, Z.W., Zhang, Y.J.: Image Retrieval Using Both Color and Texture Features. J. China Instit. Commun. 20(5), 36–40 (1999)Google Scholar
  4. 4.
    Liu, J.L., Gao, W.R., Tao, C.K.: Distortion-invariant Image Processing with Standardization Method. Opto-Electronic Engin. 33(12), 75–78 (2006)Google Scholar
  5. 5.
    Wang, Z., Chi, Z., Feng, D.: Fuzzy Integral for Leaf Image Retrieval. Proc. Fuzzy Syst. 372–377 (2002)Google Scholar
  6. 6.
    Gu, X., Du, J.X., Wang, X.F.: Leaf Recognition Based on the Combination of Wavelet Transform and Gaussian Interpolation. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 253–262. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  8. 8.
    Akansu, A.N., Richard, A.H.: Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets. Academic Press. Inc., London (1992)zbMATHGoogle Scholar
  9. 9.
    Vetterli, M., Herley, C.: Wavelets and Filter Banks: Theory and Design. IEEE Trans, On Signal Proc. 40, 2207–2231 (1992)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chan, F.H.Y., Zhu, F.K.H.: Adaptive Thresholding by Variational Method. IEEE Trans. Image Proc., 468–473 (1998)Google Scholar
  11. 11.
    Cortes, V.V.: Support-vector network. Machine Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  12. 12.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Qing-Kui Man
    • 1
    • 2
  • Chun-Hou Zheng
    • 3
  • Xiao-Feng Wang
    • 2
    • 4
  • Feng-Yan Lin
    • 1
    • 2
  1. 1.Institute of AutomationQufu Normal UniversityRizhaoChina
  2. 2.Intelligent Computing Lab, Institute of Intelligent MachinesChinese Academy of SciencesHefeiChina
  3. 3.College of Information and Communication TechnologyQufu Normal University 
  4. 4.Department of Computer Science and TechnologyHefei UniversityHefeiChina

Personalised recommendations