Advertisement

Abstract

With the adaptive network fuzzy inference system (ANFIS), this paper presents a method of building a model of the low circle fatigue life. According to real experiment data got in the low circle fatigue experiment, a fatigue life model for low fatigue experiment is built. Finally, comparing with the Manson-Coffin equation, it can be concluded that the model of ANFIS is accurately and effectively.

Keywords

Membership Function Fatigue Life Fuzzy Rule Fuzzy Inference System Adaptive Network Base Fuzzy Inference System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kazazian, H.H., Phillips, J.A., Boehm, C.D., Vik, T.A., Mahoney, M.J., Ritchey, A.K.: Prenatal Diagnosis of Beta-thalassemia by Amniocentesis: Linkageanalysis using Multiple Polymorphic Restriction Endonuclease Sites. Blood 56, 926–930 (1980)Google Scholar
  2. 2.
    Esragh, F., Mamdani, E.H.: A General Approach to Linguistic Approximation. In: Fuzzy Reasoning and Its Application, London (1981) Google Scholar
  3. 3.
    Kazeminezhad, M.H., Etemad-Shahidi, A., Mousavi, S.J.: Application of Fuzzy Inference System in the Prediction of Wave Parameters. Ocean Engin. 32, 1709–1725 (2005)CrossRefGoogle Scholar
  4. 4.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan Publishing, New York (1999)zbMATHGoogle Scholar
  5. 5.
    Fu, J.Y., Liang, S.G., Li, Q.S.: Prediction of Wind-induced Pressures on a Large Gymnasium Roof using Artificial Neural Networks. Computers and Structures 85, 179–192 (2007)CrossRefGoogle Scholar
  6. 6.
    Guler, I.: Adaptive Neuro-fuzzy Inference System for Gap Discontinuities in Coplanar Waveguides. Int. J. Electron. 92, 173–188 (2005)CrossRefGoogle Scholar
  7. 7.
    Übeyli, E.D., Güler, İ.: Adaptive Neuro-Fuzzy Inference Systems for Analysis of Internal Carotid Arterial Doppler Signals. Comput. Biol. Med. 35, 687–702 (2005)CrossRefGoogle Scholar
  8. 8.
    Shalinie, S.M.: Modeling Connectionist Neuro-Fuzzy Network and Applications. Neural Comput. Applic. 14, 88–93 (2005)CrossRefGoogle Scholar
  9. 9.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  10. 10.
    Roger, J.J.S.: ANFIS: Adaptive Network-based Fzzy Inference Systems. IEEE Tran Systems, Man and Cybernatics 23(3), 665–685 (1993)CrossRefGoogle Scholar
  11. 11.
    Stepnowski, A., Mo szyński, M., Tran, V.D.: Adaptive Neuro-Fuzzy and Fuzzy Decision Tree Classifiers as Applied to Seafloor Characterization. Acoust. Physics 49(2), 193–202 (2003)CrossRefGoogle Scholar
  12. 12.
    Ertuğrul, Ç., Osman, Y.: Prediction of Wind Speed and Power in the Central Anatolian Region of Turkey by Adaptive Neuro-Fuzzy Inference Systems (ANFIS). J. Eng. Env. Sci. 30, 35–41 (2006)Google Scholar
  13. 13.
    Miyano, Y., Nakada, M., McMurray, M.K., Muki, R.: Prediction of Flexural Fatigue Strength of CFRP Composites under Arbitrary Frequency, Stress Ratio and Temperature. Journal of Composite Materials 31, 619–638 (1997)Google Scholar
  14. 14.
    Miyano, Y., McMurray, M.K., Enyama, J., Nakada, M.: Loading Rate and Temperature Dependence on Flexural Fatigue Behavior of a Satin Woven CFRP Laminate. Journal of Composite Materials 28, 1250–1260 (1994)Google Scholar
  15. 15.
    Qi, H.Y., Wen, W.D., Sun, L.W.: Fatigue Life Prediction and Experiment Research for Composite Laminates with Circular Hole. J. Cent. South Univ. Techno. 11(1), 19–22 (2004)CrossRefGoogle Scholar
  16. 16.
    Caprino, G., Amore, A.: Fatigue Life of Draphite/Epoxy Laminates Subjected to Tension-Compression Loadings. Mechanics of Time-dependent Materials 4, 139–154 (2000)CrossRefGoogle Scholar
  17. 17.
    Novozhilov, N.I.: Prediction of Fatigue Life and the Technicoeconomic Efficiency of High-Strength Steel Railway Bridge Structures. Strength of Materials 10(1), 43–47 (1978)CrossRefGoogle Scholar
  18. 18.
    Dai, Z.Y.: Fatigue Damage Critical and Damage Locality. In: Wang, G.G., Gao, Q. (eds.) Solid Damage and Destroy, pp. 75–81. Chengdu University Science and Technology Press, Chengdu (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Changhong Liu
    • 1
  • Xintian Liu
    • 1
  • Hu Huang
    • 1
  • Lihui Zhao
    • 1
    • 2
  1. 1.College of Automobile EngineeringShanghai University of Engineering ScienceShanghaiChina
  2. 2.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations