Skip to main content

A Statistical Approach to Incremental Induction of First-Order Hierarchical Knowledge Bases

  • Conference paper
Inductive Logic Programming (ILP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5194))

Included in the following conference series:

Abstract

Knowledge bases play an important role in many forms of artificial intelligence research. A simple approach to producing such knowledge is as a database of ground literals. However, this method is neither compact nor computationally tractable for learning or performance systems to use. In this paper, we present a statistical method for incremental learning of a hierarchically structured, first-order knowledge base. Our approach uses both rules and ground facts to construct succinct rules that generalize the ground literals. We demonstrate that our approach is computationally efficient and scales well to domains with many relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  2. De Raedt, L.: Inductive Theory Revision: An Inductive Logic Programming Approach. Academic Press, London (1992)

    Google Scholar 

  3. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry (Expanded Edition). MIT Press, Cambridge (1972)

    Google Scholar 

  4. Anderson, J.: A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior 22, 261–295 (1983)

    Article  Google Scholar 

  5. Stracuzzi, D.J.: Scalable Knowledge Acquisition Through Cumulative Learning and Memory Organization. PhD thesis, Department of Computer Science, University of Massachusetts, Amherst, MA (2006)

    Google Scholar 

  6. Utgoff, P.E.: Perceptron trees: A case study in hybrid concept representations. Connection Science 1(4), 377–391 (1989)

    Article  Google Scholar 

  7. Stracuzzi, D.J., Utgoff, P.E.: Randomized variable elimination. Journal of Machine Learning Research 5, 1331–1364 (2004)

    MathSciNet  Google Scholar 

  8. Quartz, S.R., Sejnowski, T.J.: The neural basis of development: A constructivist manifesto. Behavioral and Brain Sciences 20, 537–596 (1997)

    Google Scholar 

  9. Quinlan, J.R., Cameron-Jones, R.M.: Foil: A midterm report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 3–20. Springer, Heidelberg (1993)

    Google Scholar 

  10. Kok, S., Singla, P., Richardson, M., Domingos, P.: The Alchemy system for statistical relational AI. Technical report, University of Washington, Seattle, WA (2005), http://www.cs.washington.edu/ai/alchemy/

  11. Richardson, M., Domingos, P.: Markov logic networks. Journal of Machine Learning Research 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  12. Pearl, J.: On the connection between the complexity and credibility of inferred models. Internation Journal of General Systems 4, 255–264 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jensen, D.D., Cohen, P.R.: Multiple comparisons in induction algorithms. Machine Learning 38(3), 309–338 (2000)

    Article  MATH  Google Scholar 

  14. Blockeel, H., De Raedt, L.: Inductive database design. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS (LNAI), vol. 1079, pp. 376–385. Springer, Heidelberg (1996)

    Google Scholar 

  15. De Raedt, L., Bruynooghe, M.: A theory of clausal discovery. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambéry, France, pp. 1058–1063. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  16. Sammut, C., Banerji, R.B.: Learning concepts by asking questions. In: Machine Learning: An Artificial Intelligence Approach. Morgan Kaufmann, San Mateo (1986)

    Google Scholar 

  17. Shapiro, E.: An algorithm that infers theories from facts. In: Drinan, A. (ed.) Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 446–451. Morgan Kaufmann, San Francisco (1981)

    Google Scholar 

  18. Taylor, K.: Autonomous Learning by Incremental Induction and Revision. PhD thesis, Australian National University (1996)

    Google Scholar 

  19. Basilio, R., Zaverucha, G., Barbosa, V.C.: Learning logic programs with neural networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 15–26. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Carpenter, amd Grossberg, G.A., Rosen, S., David, B.: Fuzzy ART: Fast, stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4, 759–771 (1991)

    Article  Google Scholar 

  21. De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explorations 5(1), 31–48 (2003)

    Article  Google Scholar 

  22. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)

    Google Scholar 

  23. Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A. (eds.) Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming, pp. 138–155. Springer, Heidelberg (2000)

    Google Scholar 

  24. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)

    Article  MATH  Google Scholar 

  25. Muggleton, S.H.: Learning stochastic logic programs. In: Getoor, L., Jensen, D. (eds.) Proceedings of the AAAI 2000 Workshop on Learning Statistical Models from Relational Data. AAAI Press, Menlo Park (2000)

    Google Scholar 

  26. Muggleton, S.H.: Learning structure and parameters of stochastic logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Filip Železný Nada Lavrač

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stracuzzi, D.J., Könik, T. (2008). A Statistical Approach to Incremental Induction of First-Order Hierarchical Knowledge Bases. In: Železný, F., Lavrač, N. (eds) Inductive Logic Programming. ILP 2008. Lecture Notes in Computer Science(), vol 5194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85928-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85928-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85927-7

  • Online ISBN: 978-3-540-85928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics