Skip to main content

Generalized Joint Linear Complexity of Linear Recurring Multisequences

  • Conference paper
Sequences and Their Applications - SETA 2008 (SETA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5203))

Included in the following conference series:

  • 932 Accesses

Abstract

The joint linear complexity of multisequences is an important security measure for vectorized stream cipher systems. Extensive research has been carried out on the joint linear complexity of N-periodic multisequences using tools from Discrete Fourier transform. Each N-periodic multisequence can be identified with a single N-periodic sequence over an appropriate extension field. It has been demonstrated that the linear complexity of this sequence, the so called generalized joint linear complexity of the multisequence, may be considerably smaller than the joint linear complexity, which is not desirable for vectorized stream ciphers. Recently new methods have been developed and results of greater generality on the joint linear complexity of multisequences consisting of linear recurring sequences have been obtained. In this paper, using these new methods, we investigate the relations between the generalized joint linear complexity and the joint linear complexity of multisequences consisting of linear recurring sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies, D.W. (ed.): EUROCRYPT 1991. LNCS, vol. 547, pp. 168–175. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  2. Dawson, E., Simpson, L.: Analysis and design issues for synchronous stream ciphers. In: Niederreiter, H. (ed.) Coding Theory and Cryptology, pp. 49–90. World Scientific, Singapore (2002)

    Google Scholar 

  3. Fu, F.W., Niederreiter, H., Su, M.: The expectation and variance of the joint linear complexity of random periodic multisequences. J. Complexity 21, 804–822 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fu, F.W., Niederreiter, H., Özbudak, F.: Joint Linear Complexity of Multisequences Consisting of Linear Recurring Sequences, Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences (to appear)

    Google Scholar 

  5. Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 303–316. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15, 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Meidl, W.: Discrete Fourier transform, joint linear comoplexity and generalized joint linear complexity of multisequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 101–112. Springer, Heidelberg (2005)

    Google Scholar 

  9. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)

    Article  MathSciNet  Google Scholar 

  11. Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complexity 19, 61–72 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Niederreiter, H.: Sequences with almost perfect linear complexity profile. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology-EUROCRYPT 1987. LNCS, vol. 304, pp. 37–51. Springer, Berlin (1988)

    Google Scholar 

  13. Niederreiter, H., Johansson, T., Maitra, S. (eds.): INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Berlin (2003)

    Google Scholar 

  14. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  15. Rueppel, R.A.: Stream ciphers. In: Simmons, G.J. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. IEEE Press, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Solomon W. Golomb Matthew G. Parker Alexander Pott Arne Winterhof

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meidl, W., Özbudak, F. (2008). Generalized Joint Linear Complexity of Linear Recurring Multisequences. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds) Sequences and Their Applications - SETA 2008. SETA 2008. Lecture Notes in Computer Science, vol 5203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85912-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85912-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85911-6

  • Online ISBN: 978-3-540-85912-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics