Skip to main content

Understanding Molecular Recognition and Self-Assembly from Large-Scale Numerical Simulations

  • Conference paper
High Performance Computing on Vector Systems 2008

Abstract

Nowadays, complex chemical problems such as the origin and mechanism of molecular recognition and self-assembly can be addressed computationally, using high performance resources. This is illustrated in the following, using the adsorption of small amino acids and DNA base molecules on metals as an example. First-principles calculations are used to rationalize the long-range chiral recognition between adenine and phenylglycine adsorbed on Cu(110) [Chen and Richardson, Nature Materials 2, 324 (2003)]. The enantiomeric interaction is traced to substrate-mediated Coulomb repulsion and template effects. The mechanism revealed here (i) shows that the Easson and Stedman model for chiral recognition may include long-range electrostatic interactions and (ii) illustrates the catalytic potential of the substrate for molecular self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, R.F.W.: Atoms in molecules: A quantum theory. Oxford, USA (1990)

    Google Scholar 

  2. Blankenburg, S., Schmidt, W.G.: Adsorption of phenylglycine on copper: Density functional calculations. Phys. Rev. B 74, 155419 (2006)

    Article  Google Scholar 

  3. Blankenburg, S., Schmidt, W.G.: Steric effects and chirality in the adsorption of glycine and phenylglycine on Cu(110). Nanotechnology 18, 424030 (2007)

    Article  Google Scholar 

  4. Booth, T.D., Wahnon, D., Wainer, I.W.: Is chiral recognition a three-point process? Chirality 9, 96 (1997)

    Article  Google Scholar 

  5. Chen, Q., Richardson, N.V.: Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nature Materials 2, 324 (2003)

    Article  Google Scholar 

  6. Di Felice, R. Selloni, A. Adsorption modes of cysteine on Au(111): Thiolate, amino-thiolate, disulfide. J. Chem. Phys. 120, 4906 (2004)

    Article  Google Scholar 

  7. Easson, E.H., Stedman, E.: Studies on the relationship between chemical constitution and physiological action. Biochem. J. 27, 1257 (1933)

    Google Scholar 

  8. Ernst, K.H., Kuster, Y., Fasel, R., Müller, M., Ellerbeck, U.: Two-dimensional separation of [7]helicene enantiomers on Cu(111). Chirality 13, 675 (2001)

    Article  Google Scholar 

  9. Hamann, D.R.: H2O hydrogen bonding in density-functional theory. Phys. Rev. B 55, R10,157 (1997)

    Article  Google Scholar 

  10. Hauschild, A., Karki, K., Cowie, B.C.C., Rohlfing, M., Tautz, F.S., Sokolowski, M.: Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Phys. Rev. Lett. 94, 036106 (2005)

    Article  Google Scholar 

  11. Jones, G., Jenkins, S.J., King, D.A.: Hydrogen bonds at metal surfaces: Universal scaling and quantification of substrate effects. Surf. Sci. 600, L224 (2006)

    Article  Google Scholar 

  12. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  13. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  Google Scholar 

  14. Kühnle, A., Linderoth, T.R., Hammer, B., Besenbacher, F.: Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunneling microscopy. Nature 415, 891 (2002)

    Article  Google Scholar 

  15. Lorenzo, M.O., Baddeley, C.J., Muryn, C., Raval, R.: Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376 (2000)

    Article  Google Scholar 

  16. Lukas, S., Witte, G., Wöll, C.: Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88, 028,301 (2002)

    Google Scholar 

  17. Nilsson, A., Pettersson, L.G.M.: Chemical bonding on surfaces probed by x-ray emission spectroscopy and density functional theory. Surf. Sci. Rep. 55, 49 (2004)

    Article  Google Scholar 

  18. Northrup, J.E., Froyen, S.: Structure of GaAs(001) surfaces: The role of electrostatic interactions. Phys. Rev. B 50, 2015 (1994)

    Article  Google Scholar 

  19. Nyberg, M., Odelius, M., Nilsson, A., Pettersson, L.G.M.: Hydrogen bonding between adsorbed deprotonated glycine molecules on Cu(110). J. Chem. Phys. 119, 12577 (2003)

    Article  Google Scholar 

  20. Ortmann, F., Schmidt, W.G., Bechstedt, F.: Attracted by long-range electron correlation: Adenine on graphite. Phys. Rev. Lett. 95, 186101 (2005)

    Article  Google Scholar 

  21. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Fiolhais, D.J.S.C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)

    Article  Google Scholar 

  22. Preuss, M., Schmidt, W.G., Bechstedt, F.: Coulombic amino group-metal bonding: Adsorption of adenine on cu(110). Phys. Rev. Lett. 94, 236102 (2005)

    Article  Google Scholar 

  23. Schmidt, W.G., Seino, K., Preuss, M., Hermann, A., Ortmann, F., Bechstedt, F.: Organic molecule adsorption on solid surfaces: chemical bonding, mutual polarisation and dispersion interaction. Appl. Phys. A 85, 387 (2006)

    Article  Google Scholar 

  24. Thierfelder, C., Hermann, A., Schwerdtfeger, P., Schmidt, W.G.: Strongly bonded water monomers on the ice ih basal plane: Density-functional calculations. Phys. Rev. B 74, 045,422 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Resch Sabine Roller Katharina Benkert Martin Galle Wolfgang Bez Hiroaki Kobayashi Toshio Hirayama

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blankenburg, S., Schmidt, W.G. (2009). Understanding Molecular Recognition and Self-Assembly from Large-Scale Numerical Simulations. In: Resch, M., et al. High Performance Computing on Vector Systems 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85869-0_12

Download citation

Publish with us

Policies and ethics