Skip to main content

An Ambient Assisted-Living Architecture Based on Wireless Sensor Networks

  • Conference paper

Part of the book series: Advances in Soft Computing ((AINSC,volume 51))

Abstract

Ambient Assisted-Living (AAL) is becoming an important research field in Ambient Intelligence. Many technologies have emerged related with pervasive computing vision, that can give support for AAL. One of the most reliable approaches is based on wireless sensor networks (WSN). Based on this basic assumption we have taken the promising SunSPOT platform as base support, and build upon it a services architecture for our AAL proposal. This architectural model allows us the decoupling of applications in components such as ECG’s monitor, position system or location awareness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steg, H., Strese, H., Loroff, C., Hull, J., Schmidt, S.: Ambient Assisted Living. Europe Is Facing a Demographic Challenge. Ambient Assisted Living Offers Solutions. European Overview Report, 1–85 (2006)

    Google Scholar 

  2. IEEE 802.15 WPAN Task Group 4 (TG4) (Revision dated 2008), http://www.ieee802.org/15/pub/TG4.html

  3. ZigBee Specification (Revision dated Q4/2007), http://www.zigbee.org

  4. Hill, J., Horton, M., Kling, R., Krishnamurthy, L.: The Platforms Enabling Wireless Sensor Networks No Journal, 1–6 (2004)

    Google Scholar 

  5. Andreu, J., Viudez, J., Holgado, J.: A Survey of Wireless Sensor Networks. In: II Symposium on Software Development, SDS 2008, pp. 271–286 (2008)

    Google Scholar 

  6. Stankovic, J.: Wireless Sensor Networks. Handbook of Real-Time and Embedded Systems. Chapman & Hall, Boca Raton (2008)

    Google Scholar 

  7. Matheus, K.: Wireless Local Area Networks and Wireless Personal Area Networks (WLANs and WPANs). No Journal, 1–19 (2005)

    Google Scholar 

  8. Curtis, S., Biagioni, E., Martha, E., Crosby.: Ad-Hoc Wireless Body Area Network for Augmented Cognition Sensors. In: HCI, pp. 38–46 (2007)

    Google Scholar 

  9. SunSPOTWorld, http://www.sunSPOTworld.com/

  10. Stalling, W.: Cryptography and Network Security: Principles and Practice, 3rd edn. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  11. Hankerson, D.R., Vanstone, S.A., Menezes, A.J.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Lu, J., Naeem, T., Stav, J.B.: A Distributed Information System for Healthcare Web Services. In: APWeb Workshops, pp. 783–790 (2006)

    Google Scholar 

  13. Blasco, R., Casas, R., Marco, Á., Coarasa, V., Garrido, Y., Falcó, J.L.: Fall Detector Based on Neural Networks. BIOSIGNALS 2008, 540–545 (2008)

    Google Scholar 

  14. Shen, C., Kao, T., Huang, C., Lee, J.: Wearable Band Using a Fabric-Based Sensor for Exercise ECG Monitoring. In: ISWC, pp. 143–144 (2006)

    Google Scholar 

  15. Yamakawa, T., Inoue, T., Harada, M., Tsuneda, A.: Design of a CMOS Heartbeat Spike-Pulse Detection Circuit Integrable in an RFID Tag for Heart Rate Signal Sensing. IEICE Transactions (IEICET) 90-C(6), 1336–1343 (2007)

    Article  Google Scholar 

  16. Bumachar, E.M., Andreão, R. V., Pereira, J.G.: A Portable ECG Device in a Home Care Environment Using Burst Transmission. BIODEVICES 2008, 107–110 (2008)

    Google Scholar 

  17. Wu, H., Chang, H., You, C., Chu, H., Huang, P.: Modeling and Optimizing Positional Accuracy Based on Hyperbolic Geometry for the Adaptive Radio Interferometric Positioning System. LoCA, 228–244 (2007)

    Google Scholar 

  18. King, J., Bose, R., Yang, H., Pickles, S., Helal, A.: Atlas: A Service-Oriented Sensor Platform. In: Proceedings of 31st IEEE Conference on Local Computer Networks, pp. 630–638 (2006)

    Google Scholar 

  19. Wood Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin, S., Stankovic, J.: ALARM-NET: Wireless Sensor Networks for Assisted-Living and Residential Monitoring. Technical Report CS-2006-13 University of Virginia, 1-14 (2006)

    Google Scholar 

  20. Kambourakis, G., Klaoudatou, E., Gritzalis, S.: Securing Medical Sensor Environments: The CodeBlue Framework Case. ARES, 637–643 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Dante I. Tapia José Bravo

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andréu, J., Viúdez, J., Holgado, J.A. (2009). An Ambient Assisted-Living Architecture Based on Wireless Sensor Networks. In: Corchado, J.M., Tapia, D.I., Bravo, J. (eds) 3rd Symposium of Ubiquitous Computing and Ambient Intelligence 2008. Advances in Soft Computing, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85867-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85867-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85866-9

  • Online ISBN: 978-3-540-85867-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics