Skip to main content

Silicon Nanoparticles: Excitonic Fine Structure and Oscillator Strength

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

In this review, recent results on optical spectroscopy on silicon nanoparticles are summarized. We will demonstrate the quantum size effect observed in the photoluminescence for nanoparticles with diameters below $10 nm$. Moreover, the excitonic fine structure splitting caused by the exchange interaction is investigated using time-resolved and magnetic-field-dependent photoluminescence measurements. From these results, it is possible to estimate the rate of non-radiative recombinations in these nanoparticles, which allows to determine the oscillator strength and the quantum yield independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  2. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys. 86, 6128.

    Google Scholar 

  3. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, Appl. Phys. Lett. 76 351 (2000).

    Article  ADS  Google Scholar 

  4. J. Heitmann, F. Müller, M. Zacharias, and U. Gösele, Adv. Mater. 17, 795 (2005).

    Article  Google Scholar 

  5. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and A. Paillard, Phys. Rev. B 62, 15942 (2000).

    Article  ADS  Google Scholar 

  6. L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Lett. 5, 655 (2005).

    Article  ADS  Google Scholar 

  7. C. Meier, A. Gondorf, S. Lüttjohann, and A. Lorke, J. Appl. Phys. 101, 103112 (2007).

    Article  ADS  Google Scholar 

  8. S. Lüttjohann, C. Meier, M. Offer, and H. Wiggers, Eurphys. Lett. 79, 37002, (2007).

    Article  ADS  Google Scholar 

  9. L. Pavesi, L. DalNegro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).

    Article  ADS  Google Scholar 

  10. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, Nat. Mater. 10, 1038 (2005).

    Google Scholar 

  11. J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, and C. Meier, J. Nanosci. Nanotechnol. 4, 1039 (2004).

    Google Scholar 

  12. F. Trani, G. Cantele, D. Ninno, and G. Iadonisi, Phys. Rev. B 72, 075423 (2005).

    Article  ADS  Google Scholar 

  13. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. van Tendeloo, and V. V. Moshchalkov, Nat. Nantechnol. 10, 1038 (2008).

    Google Scholar 

  14. J. C. Kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett. 75, 214 (1999).

    Article  ADS  Google Scholar 

  15. Y. G. Kim, Y. S. Joh, J. H. Song, K. S. Baek, S. K. Chang, and E. D. Sim, Appl. Phys. Lett. 83, 2656 (2003).

    Article  ADS  Google Scholar 

  16. E. C. Le Ru, J. Fack, and R. Murray, Phys. Rev. B 67, 245318 (2003).

    Article  ADS  Google Scholar 

  17. L. Pavesi and M. Ceschini, Phys. Rev. B 48, 17625 (1993).

    Article  ADS  Google Scholar 

  18. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopf, and F. Koch, Phys. Rev. Lett. 81, 2803 (1998).

    Article  ADS  Google Scholar 

  19. M. S. Hybertsen, Phys. Rev. Lett. 72, 1514 (1994).

    Article  ADS  Google Scholar 

  20. J. C. Merle, M. Capizzi, P. Fiorini, and A. Frova, Phys. Rev. B 17, 4821 (1978).

    Article  ADS  Google Scholar 

  21. D. H. Feng, Z. Z. Xu, T. Q. Jia, X. X. Li, and S. Q. Gong, Phys. Rev. B 68, 035334 (2003).

    Article  ADS  Google Scholar 

  22. J. B. Xia, Phys. Rev. B 40, 8500 (1989).

    Article  ADS  Google Scholar 

  23. A. D. Yoffe, Adv. Phys. 42, 173 (1993).

    Article  ADS  Google Scholar 

  24. D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys. Lett. 88, 233116 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meier, C., Lüttjohann, S., Offer, M., Wiggers, H., orke, A. (2009). Silicon Nanoparticles: Excitonic Fine Structure and Oscillator Strength. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_7

Download citation

Publish with us

Policies and ethics