Skip to main content

Rectification Through Entropic Barriers

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

The dynamics of Brownian motion has widespread applications extending from transport in designed micro-channels up to its prominent role for inducing transport in molecular motors and Brownian motors. Here, Brownian transport is studied in micro-sized, two dimensional periodic channels, exhibiting periodically varying cross sections. The particles in addition are subjected to a constant external force acting alongside the direction of the longitudinal channel axis. For a fixed channel geometry, the dynamics of the two dimensional problem is characterized by a single dimensionless parameter which is proportional to the ratio of the applied force and the temperature of the environment. In such structures entropic effects may play a dominant role. Under certain conditions the two dimensional dynamics can be approximated by an effective one dimensional motion of the particle in the longitudinal direction. The Langevin equation describing this reduced, one dimensional process is of the type of the Fick-Jacobs equation. It contains an entropic potential determined by the varying extension of the eliminated transversal channel direction, and a correction to the diffusion constant that introduces a space dependent diffusion. We analyze the influence of broken channel symmetry and the validity of the Fick-Jacobs equation. For the nonlinear mobility we find a temperature dependence which is opposite to that known for particle transport in periodic energetic potentials. The influence of entropic effects is discussed for both, the nonlinear mobility, and the effective diffusion constant. In case of broken reflection symmetry rectification occurs and there is a favored direction for particle transport. The rectification effect could be maximized due to the optimal chosen absolute value of the applied bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Liu, P. Li, S.A. Asher: Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel, Nature 397, 141 (1999)

    Article  ADS  Google Scholar 

  2. Z. Siwy, I.D. Kosinska, A. Fulinski,C.R. Martin: Asymmetric diffusion through synthetic nanopores, Phys. Rev. Lett. 94, 048102 (2005)

    Article  ADS  Google Scholar 

  3. A.M. Berezhkovskii, S.M. Bezrukov: Optimizing transport of metabolites through large channels: Molecular sieves with and without binding, Biophys. J. 88, L17 (2005)

    Google Scholar 

  4. B. Hille: Ion {Channels of {E}xcitable Membranes} (Sinauer, Sunderland, 2001)

    Google Scholar 

  5. R.M. Barrer: Zeolites and Clay {Minerals as Sorbents and Molecular Sieves (Academic Press, London, 1978)

    Google Scholar 

  6. T. Chou, D. Lohse: Entropy-driven pumping in zeolites and biological channels, Phys. Rev. Lett. 82, 3552 (1999)

    Article  ADS  Google Scholar 

  7. C. Kettner, P. Reimann, P. Hänggi, F. Müller: Drift Ratchet, Phys. Rev. E 61, 312 (2000)

    Article  ADS  Google Scholar 

  8. S. Matthias, F. Müller: Asymmetric pores in a silicon membraneacting as massively parallel Brownian ratchets, Nature 424, 53 (2003)

    Article  ADS  Google Scholar 

  9. B. Ai, L. Liu: Current in a three-dimensional periodic tube with unbiased forces, Phys. Rev. E 74, 05114 (2006)

    Article  Google Scholar 

  10. W.D. Volkmuth, R.H. Austin: DNA electrophoresis in microlithographic arrays, Nature 358, 600 (1992)

    Article  ADS  Google Scholar 

  11. G.I. Nixon, G.W. Slater: Saturation and entropic trapping of monodisperse polymers in porous media, J. Chem. Phys. 117, 4042 (2002)

    Article  ADS  Google Scholar 

  12. R. Chang, A. Yethiraj: Dynamics of chain molecules in disordered materials, Phys. Rev. Lett. 96, 107802 (2006)

    Article  ADS  Google Scholar 

  13. P. Hänggi, F. Marchesoni, F. Nori:Brownian motors, Ann. Physik (Berlin) 14, 51 (2005)

    Article  MATH  Google Scholar 

  14. R. Astumian, P. Hänggi: Brownian motors, Phys. Today 55, 33 (2002)

    Article  Google Scholar 

  15. P. Reimann, P. Hänggi: Introduction to the physics of Brownian motors, Appl. Phys. A 75, 169 (2002)

    Google Scholar 

  16. I. Derenyi, R. Astumian: Ac separation of particles by biased {B}rownian motion in a two-dimensional sieve, Phys. Rev. E 58, 7781 (1998)

    Article  ADS  Google Scholar 

  17. T.A.J. Duke, R.H. Austin: Microfabricated sieve for the continuous sorting of macromolecules, Phys. Rev. Lett. 80, 1552 (1998)

    Article  ADS  Google Scholar 

  18. A.V. Oudenaarden, S. Boxer: Brownian ratchets: Molecular separations in lipid bilayers supported on patterned arrays, Science 285, 1046 (1999)

    Article  Google Scholar 

  19. M. Kostur, L. Schimansky-Geier: Numerical study of diffusion induced transport in {2D} systems, Phys. Lett. 265, 337 (2000)

    Article  Google Scholar 

  20. C. Keller, F. Marquardt, C. Bruder:Separation quality of a geometric ratchet, Phys. Rev. E 65, 041927 (2002)

    Article  ADS  Google Scholar 

  21. D. Reguera, G. Schmid, P.S. Burada, J.M.Rubí, P.Reimann, P.Hänggi: Entropic transport: {K}inetics, scaling and control mechanisms, Phys. Rev. Lett. 96, 130603 (2006)

    Article  ADS  Google Scholar 

  22. P.S.Burada, G.Schmid, D.Reguera, J.M.Rubí, P.Hänggi: Biased diffusion in confined media: Test of the Fick-Jacobs approximation and validity criteria, Phys. Rev. E 75, 051111 (2007)

    Google Scholar 

  23. P.S. Burada, G. Schmid, P. Talkner, P.Hänggi, D.Reguera, J.M.Rubí: Entropic particle transport in periodic channels, Biosystems 93, 16 (2008)

    Article  Google Scholar 

  24. I.D. Kosinska, I. Goychuk, M. Kostur, G. Schmid, P. Hänggi: Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck modeling, Phys. Rev. E 77, 031131 (2008)

    Article  ADS  MATH  Google Scholar 

  25. P. Hänggi, P. Talkner, M. Borkovec: Reaction rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  26. E. Purcell: Life at low Reynolds-number, Am. J. Phys. 45, 3 (1977)

    ADS  Google Scholar 

  27. H. Risken:The Fokker-Planck Equation (Springer, Berlin, 1989)

    MATH  Google Scholar 

  28. P. Hänggi, H. Thomas: Stochastic processes: Time-evolution, symmetries and linear response, Phys. Rep. 88, 207 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Jacobs:Diffusion Processes (Springer, New York, 1967)

    MATH  Google Scholar 

  30. R. Zwanzig: Diffusion past an entropic barrier, J. Phys. Chem. 96, 3926 (1992)

    Article  Google Scholar 

  31. D. Reguera, J.M. Rubí: Kinetic equations for diffusion in the presence of entropic barriers, Phys. Rev. E 64, 061106 (2001)

    Article  ADS  Google Scholar 

  32. P. Kalinay, J.K. Percus: Corrections to the Fick-Jacobs equation, Phys. Rev. E 74, 041203 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Costantini, F. Marchesoni: Threshold diffusion in atilted washboard potential, Europhys. Lett. 48, 491 (1999)

    Google Scholar 

  34. P. Reimann, C. Broeck, H. Linke, P. Hänggi, J.M. Rubí,A. Pérez-Madrid: Giant acceleration of free diffusion by use of tilted periodic potentials, Phys. Rev. Lett. 87, 010602 (2001)

    Article  ADS  Google Scholar 

  35. P. Reimann, C. Broeck, H. Linke, P. Hänggi, J.M. Rubí, A. Pérez-Madrid: Diffusion in tilted periodic potentials: Enhancement, universality, and scaling, Phys. Rev. E 65, 031104 (2002)

    Article  ADS  Google Scholar 

  36. B. Lindner, M. Kostur, L. Schimansky-Geier: Optimal diffusive transport in a tilted periodic potential, Fluct. Noise Lett. 1, R25 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, G., Burada, P.S., Talkner, P., Hänggi, P. (2009). Rectification Through Entropic Barriers. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_25

Download citation

Publish with us

Policies and ethics