Skip to main content

Optical Microcavities as Quantum-Chaotic Model Systems: Openness Makes the Difference!

  • Chapter

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

Optical microcavities are open billiards for light in which electromagnetic waves can, however, be confined by total internal reflection at dielectric boundaries. These resonators enrich the class of model systems in the field of quantum chaos and are an ideal testing ground for the correspondence of ray and wave dynamics that, typically, is taken for granted. Using phase-space methods we show that this assumption has to be corrected towards the long-wavelength limit.We first Generalizing the concept of Husimi functions to dielectric interfaces, where both the wave function and its derivative are non-zero. We then we find that curved interfaces require a semiclassical correction of Fresnel’s law due to an interference effect called Goos-Hänchen shift. It is accompanied by the so-called Fresnel filtering which, in turn, corrects Snell’s law. These two contributions are especially important near the critical angle. They are of similar magnitude and correspond to ray displacements in independent phase-space directions that can be incorporated in an adjusted reflection law. Implementing both effects into the ray model improves the agreement with wave optics by about one order of magnitude. We show that deviations from ray-wave correspondence can be straightforwardly understood with the resulting adjusted reflection law and discuss its consequences for the phase-space dynamics in optical billiards.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mesoscopic Electron Transport, edited by L. L. Sohn, L. P.Kouwenhoven, and G. Schön (Kluwer Academic Publishers, Dordrecht, 1997)

    Google Scholar 

  2. K. S. Novoselov et al.:Nature (London) 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. Y. Zhang et al.:Nature (London) 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. D. Goldhaber-Gordon et al.: Nature (London) 391, 156 (1998)

    Article  ADS  Google Scholar 

  5. S. M. Cronenwett et al.: Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  6. A. M. Chang, H. U. Baranger, L. N. Pfeiffer, and K. W. West: Phys. Rev. Lett. 73, 2111 (1994)

    Article  ADS  Google Scholar 

  7. M. Hentschel and M. Vojta: Opt. Lett. 26, 1764 (2001)

    Article  ADS  Google Scholar 

  8. S.-Y. Lee, J.-W. Ryu, T.-Y. Kwon, S. Rim, and C.-M. Kim: Phys. Rev. A 72, 061801(R) (2005)

    Article  ADS  Google Scholar 

  9. S.-B. Lee et al.: Phys. Rev. A 75, 011802 (2007)

    Article  ADS  Google Scholar 

  10. J. Wiersig: J. Opt. A: Pure Appl. Opt. 5, 53 (2003)

    Article  ADS  Google Scholar 

  11. M. Hentschel, Dissertation, TU Dresden, Germany (2001)

    Google Scholar 

  12. M. Hentschel and K. Richter, Phys. Rev. E 66, 056207 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Hentschel, H. Schomerus, and R. Schubert: Europhys. Lett. 62, 636 (2003)

    Article  ADS  Google Scholar 

  14. H. Schomerus, J. Wiersig, and M. Hentschel: Phys. Rev. A 70, 012703 (2004)

    Article  ADS  Google Scholar 

  15. T. Harayama, S. Sunada, and K. Ikeda: Phys. Rev. A. 72, 013803 (2005)

    Article  ADS  Google Scholar 

  16. H. G. L. Schwefel et al.: J. Opt. Soc. Am. B 21, 923 (2004)

    Article  ADS  Google Scholar 

  17. S. Shinohara and T. Harayama: Phys. Rev. E 75, 036216 (2007)

    Article  ADS  Google Scholar 

  18. T. Tanaka et al.: Phys. Rev. Lett. 98, 033902 (2007)

    Article  ADS  Google Scholar 

  19. M. Hentschel, T.-Y. Kwon, M. Belkin, and F. Capasso: in preparation

    Google Scholar 

  20. J. Wiersig and M. Hentschel: Phys. Rev. Lett. 100, 033901 (2008)

    Article  ADS  Google Scholar 

  21. M. Hentschel and H. Schomerus: Phys. Rev. E 65, 045603(R) (2002)

    Article  ADS  Google Scholar 

  22. F. Goos and H. Hänchen: Ann. Phys. (Leipzig) 1, 333 (1947)

    Article  ADS  Google Scholar 

  23. K. Artmann: Ann. Phys. (Leipzig) 8, 270 (1951)

    MATH  MathSciNet  Google Scholar 

  24. J. Wiersig and M. Hentschel: Phys. Rev. A 73, 031802(R) (2006)

    Article  ADS  Google Scholar 

  25. S.-Y. Lee et al.: Phys. Rev. Lett. 93, 164102 (2004)

    Article  ADS  Google Scholar 

  26. Ch.-M. Kim et al.: Appl. Phys. Lett. 92, 131110 (2008)

    Google Scholar 

  27. R. Audet et al.: Appl. Phys. Lett. 91, 131106 (2007)

    Article  ADS  Google Scholar 

  28. T. Ben-Messaoud and J. Zyss: Appl. Phys. Lett. 86, 241110 (2005)

    Article  ADS  Google Scholar 

  29. G. D. Chern et al.: Appl. Phys. Lett. 83, 1710 (2003)

    Article  ADS  Google Scholar 

  30. H. Schomerus and M. Hentschel: Phys. Rev. Lett. 96, 243903 (2006)

    Article  ADS  Google Scholar 

  31. H. E. Tureci and A. D. Stone: Opt. Lett. 27, 7 (2002)

    Article  ADS  Google Scholar 

  32. E. G. Altmann, G. Del Magno, and M. Hentschel, Europhys. Lett. 84, 10008 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hentschel, M. (2009). Optical Microcavities as Quantum-Chaotic Model Systems: Openness Makes the Difference!. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_23

Download citation

Publish with us

Policies and ethics