Skip to main content

Liquid Polyamorphism and the Anomalous Behavior of Water

  • Chapter

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

We present evidence from experiments and computer simulations supporting the hypothesis that ∈dex{polyamorphism}water displays polyamorphism, i.e., water separates into two distinct liquid phases. This concept of a new ∈dex{liquid-liquid phase transition}liquid–liquid phase transition is finding potential application to other liquids as well as water, such as silicon and silica. Here we review the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid–liquid critical point in (i) Two models of water, TIP5P and ST2, which display a first order liquid–liquid phase transition at low temperatures; (ii) Two spherically symmetric two-scale potentials known to possess a liquid–liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions; and (iii) A Hamiltonian model of water where the idea of two length/energy scales is built in. This model also displays a first order liquid–liquid phase transition at low temperatures besides the first order liquid-gas phase transition at high temperatures. We find a correlation between the dynamic fragility crossover and the locus of specific heat maxima CP max (“Widom line”) emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid-liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between C maxP and the dynamic crossover is not limited to the case of water, a hydrogen bonded network liquid, but is a more general feature of crossing the Widom line, an extension of the first-order coexistence line in the supercritical region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Waller, trans., Essayes of Natural Experiments [original in Italian by the Secretary of the Academie del Cimento]. Facsimile of 1684 English translation (Johnson Reprint Corporation, New York, 1964).

    Google Scholar 

  2. H. E. Stanley, [edited transcript of Turnbull Prize lecture], Materials Research Bulletin 24(5), 22–30 (May 1999).

    Google Scholar 

  3. C. A. Angell, M. Oguni, and W. J. Sichina, J. Phys. Chem. 86, 998–1002 (1982).

    Article  Google Scholar 

  4. P. G. Debenedetti and H. E. Stanley, Phys. Today 56(6), 40–46 (2003).

    Article  Google Scholar 

  5. O. Mishima and H. E. Stanley, Nature 396, 329–335 (1998).

    Article  ADS  Google Scholar 

  6. R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851–858 (1976)

    Article  ADS  Google Scholar 

  7. E. F. Burton and W. F. Oliver, “The Crystal Structure of Ice at Low Temperatures,” Proc. Roy. Soc. London Ser. A 153, 166–172 (1936).

    ADS  Google Scholar 

  8. O. Mishima, L. D. Calvert, and E. Whalley, Nature 310, 393–395 (1984).

    Article  ADS  Google Scholar 

  9. O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76–78 (1985).

    Article  ADS  Google Scholar 

  10. M. C. Bellissent-Funel, L. Bosio, A. Hallbrucker, E. Mayer, and R. Sridi-Dorbez, J. Chem. Phys. 97, 1282–1286 (1992).

    Article  ADS  Google Scholar 

  11. M. C. Bellissent-Funel and L. Bosio, J. Chem. Phys. 102, 3727–3735 (1995).

    Article  ADS  Google Scholar 

  12. P. H. Poole, T. Grande, F. Sciortino, H. E. Stanley, and C. A. Angell, J. Comp. Mat. Sci. 4, 373–382 (1995).

    Article  Google Scholar 

  13. W. C. Röntgen, Ann. d. Phys. u. Chem. 45, 91–97 (1892).

    Article  Google Scholar 

  14. L. Pauling, in Hydrogen Bonding, edited by D. Hadzi (Pergamon Press, New York, 1959), pp. 1–5.

    Google Scholar 

  15. S. Sastry, P. Debenedetti, F. Sciortino, and H. E. Stanley, Phys. Rev. E 53, 6144–6154 (1996).

    Article  ADS  Google Scholar 

  16. H. E. Stanley, J. Teixeira, A. Geiger, and R. L. Blumberg, Physica A 106, 260–277 (1981).

    Article  ADS  Google Scholar 

  17. H. E. Stanley, J. Phys. A 12, L329–L337 (1979).

    Article  ADS  Google Scholar 

  18. H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404–3422 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Geiger and H. E. Stanley, Phys. Rev. Lett. 49, 1749–1752 (1982).

    Article  ADS  Google Scholar 

  20. J. R. Errington, P. G. Debenedetti, and S. Torquato, Phys. Rev. Lett. 89, 215503 (2002).

    Article  ADS  Google Scholar 

  21. P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley,Nature 360, 324–328 (1992).

    Article  ADS  Google Scholar 

  22. E. G. Ponyatovskii, V. V. Sinitsyn, and T. A. Pozdnyakova, JETP Lett. 60, 360–364 (1994).

    ADS  Google Scholar 

  23. C. T. Moynihan, Mat. Res. Soc. Symp. Proc. 455, 411–425 (1997).

    Google Scholar 

  24. P. H. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Phys. Rev. Lett. 73, 1632–1635 (1994).

    Article  ADS  Google Scholar 

  25. S. S. Borick, P. G. Debenedetti, and S. Sastry, J. Phys. Chem. 99, 3781–3793 (1995).

    Article  Google Scholar 

  26. C. F. Tejero and M. Baus, Phys. Rev. E 57, 4821–4823 (1998).

    Article  ADS  Google Scholar 

  27. G. Franzese and H. E. Stanley, Physica A 314, 508 (2002).

    Article  ADS  Google Scholar 

  28. G. Franzese and H. E. Stanley, J. Phys.: Cond. Mat. 14, 2193 (2002).

    Article  ADS  Google Scholar 

  29. G. Franzese, M. I. Marqués, and H. E. Stanley, Phys. Rev. E. 67, 011103 (2003).

    Article  ADS  Google Scholar 

  30. G. Franzese and H. E. Stanley, J. Phys.: Cond. Mat. 19, 205126 (2007).

    Article  ADS  Google Scholar 

  31. H. Kanno, R. Speedy, and C. A. Angell, Science 189, 880–881 (1975).

    Article  ADS  Google Scholar 

  32. O. Mishima, J. Chem. Phys. 100, 5910–5912 (1994).

    Article  ADS  MATH  Google Scholar 

  33. O. Mishima and H. E. Stanley, Nature 392, 164–168 (1998).

    Article  ADS  Google Scholar 

  34. E. Whalley, D. D. Klug, and Y. P. Handa, Nature 342, 782–783 (1989).

    Article  ADS  Google Scholar 

  35. G. P. Johari, G. Fleissner, A. Hallbrucker, and E. Mayer, J. Phys. Chem. 98, 4719–4725 (1994).

    Article  Google Scholar 

  36. R. J. Speedy, P. G. Debenedetti, R. S. Smith, C. Huang, and B. D. Kay, J. Chem. Phys. 105, 240–244 (1996).

    Article  ADS  Google Scholar 

  37. O. Mishima, Nature 384, 546–549 (1996).

    Article  ADS  Google Scholar 

  38. L. S. Bartell and J. Huang, J. Phys. Chem. 98, 7455–7457 (1994).

    Article  Google Scholar 

  39. P. Brüggeller and E. Mayer, Nature 288, 569–571 (1980).

    Article  ADS  Google Scholar 

  40. P. H. Poole, U. Essmann, F. Sciortino, and H. E. Stanley, Phys. Rev. E 48, 4605–4610 (1993).

    Article  ADS  Google Scholar 

  41. H. Tanaka, J. Chem. Phys. 105, 5099–5111 (1996).

    Article  ADS  Google Scholar 

  42. S. Harrington, R. Zhang, P. H. Poole, F.Sciortino, and H. E. Stanley, Phys. Rev. Lett. 78, 2409–2412 (1997).

    Article  ADS  MATH  Google Scholar 

  43. F. Sciortino, P. H. Poole, U. Essmann, and H. E. Stanley, Phys. Rev. E 55, 727–737 (1997).

    Article  ADS  Google Scholar 

  44. S. Harrington, P. H. Poole, F. Sciortino, and H. E. Stanley, J. Chem. Phys. 107, 7443–7450 (1997).

    Article  ADS  Google Scholar 

  45. W. L. Jorgensen, J. Chandrasekhar, J. Madura, R. W. Impey, and M. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  46. M. Yamada, S. Mossa, H. E. Stanley, F. Sciortino, Phys. Rev. Lett. 88, 195701 (2002).

    Article  ADS  Google Scholar 

  47. D. Paschek, Phys. Rev. Lett. 94, 217802 (2005).

    Article  ADS  Google Scholar 

  48. E. Shiratani and M. Sasai, J. Chem. Phys. 108, 3264–3276 (1998).

    Article  ADS  Google Scholar 

  49. M.-C. Bellissent-Funel, Europhys. Lett. 42, 161–166 (1998).

    Article  ADS  Google Scholar 

  50. H. E. Stanley, S. V. Buldyrev, M. Canpolat, O. Mishima, M. R. Sadr-Lahijany, A. Scala, and F. W. Starr, Phys. Chem. Chem. Phys. (PCCP) 2, 1551–1558 (2000).

    Article  Google Scholar 

  51. A. K. Soper and M. A. Ricci, Phys. Rev. Lett. 84, 2881 (2000) and references cited therein.

    Article  ADS  Google Scholar 

  52. J.-M. Zanotti, M.-C. Bellissent-Funel, and S.-H. Chen, Europhys. Lett. 71, 91–97 (2005).

    Article  ADS  Google Scholar 

  53. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, and C. Y. Mou, Phys. Rev. Lett. 95, 117802 (2005).

    Article  ADS  Google Scholar 

  54. M. E. Green and J. Lu, J. Coll. Int. Sci. 171, 117–126 (1995).

    Article  Google Scholar 

  55. K. Koga, X. C. Zeng, and H. Tanaka, Phys. Rev. Lett. 79, 5262–5265 (1997).

    Article  ADS  Google Scholar 

  56. J. Slovak, K. Koga, H. Tanaka, and X. C. Zeng, Phys. Rev. E 60, 5833–5840 (1999).

    Article  ADS  Google Scholar 

  57. K. Koga, X. C. Zeng, and H. Tanaka, Chem. Phys. Lett. 285, 278–283 (1998).

    Article  ADS  Google Scholar 

  58. K. Koga, H. Tanaka, and X. C. Zeng, Nature. 408, 564 (2000).

    Article  ADS  Google Scholar 

  59. R. Bergman and J. Swenson, Nature 403, 283–286 (2000).

    Article  ADS  Google Scholar 

  60. J. Teixeira, J. M. Zanotti, M.-C.Bellissent-Funel, and S. H. Chen, Physica B 234, 370–374 (1997).

    Article  ADS  Google Scholar 

  61. P. Gallo, Phys. Chem. Phys. 2, 1607–1611 (2000).

    Article  Google Scholar 

  62. P. Gallo, M. Rovere, M. A. Ricci, C. Hartnig, and E. Spohr, Europhys. Lett. 49, 183–188 (2000).

    Article  ADS  Google Scholar 

  63. P. Gallo, M. Rovere, M. A. Ricci, C. Hartnig, and E. Spohr, Philos. Mag. B 79, 1923–1930 (1999).

    ADS  Google Scholar 

  64. M. Rovere, M. A. Ricci, D. Vellati, and F. Bruni, J. Chem. Phys. 108, 9859–9867 (1998).

    Article  ADS  Google Scholar 

  65. M.-C. Bellissent-Funel, R. Sridi-Dorbez, and L. Bosio, J. Chem. Phys. 104, 10023–10029 (1996).

    Article  ADS  Google Scholar 

  66. J. Forsman, B. Jonsson, and C. E. Woodward, J. Phys. Chem.-US 100, 15005–15010 (1996).

    Article  MATH  Google Scholar 

  67. M. Meyer and H. E. Stanley, J. Phys. Chem. B 103, 9728–9730 (1999).

    Article  Google Scholar 

  68. P. C. Hemmer and G. Stell, Phys. Rev. Lett. 24, 1284–1287 (1970).

    Article  ADS  Google Scholar 

  69. M. Canpolat, F. W. Starr, M. R. Sadr-Lahijany, A. Scala, O. Mishima, S. Havlin, and H. E. Stanley, Chem. Phys. Lett. 294, 9–12 (1998).

    Article  ADS  Google Scholar 

  70. E. Shiratani and M. Sasai, J. Chem. Phys. 104, 7671–7680 (1996).

    Article  ADS  Google Scholar 

  71. H. Tanaka, Phys. Rev. Lett. 80, 113–116 (1998).

    Article  ADS  Google Scholar 

  72. C. A. Angell, J. Shuppert, and J. C. Tucker, J. Phys. Chem. 77, 3092–3099 (1973).

    Article  Google Scholar 

  73. F. Sciortino, L. Fabbian, S.-H. Chen, and P. Tartaglia, Phys. Rev. E 56, 5397–5404 (1997).

    Article  ADS  Google Scholar 

  74. F. Sciortino, P. Gallo, P. Tartaglia, and S.-H. Chen, Phys. Rev. E 54, 6331–6343 (1996).

    Article  ADS  Google Scholar 

  75. P. Kumar, G. Franzese, S. V. Buldyrev, H. E. Stanley, Phys. Rev. E 73, 041505 (2006).

    Article  ADS  Google Scholar 

  76. Y. Xie, K. F. Ludwig, G. Morales, D. E. Hare, and C. M. Sorensen, Phys. Rev. Lett. 71, 2051–2053 (1993).

    Article  ADS  Google Scholar 

  77. F. Sciortino, P. Poole, H. E. Stanley, and S. Havlin, Phys. Rev. Lett. 64, 1686–1689 (1990).

    Article  ADS  Google Scholar 

  78. A. Luzar and D. Chandler, Nature 379, 55–57 (1996); Phys. Rev. Lett. 76, 928–931 (1996).

    Article  ADS  Google Scholar 

  79. F. W. Starr, J. K. Nielsen, and H. E. Stanley, Phys. Rev. Lett. 82, 2294–2297 (1999); Phys. Rev. E 62, 579–587 (2000).

    Article  ADS  Google Scholar 

  80. J. R. Errington and P. G. Debenedetti, Nature 409, 318–321 (2001).

    Article  ADS  Google Scholar 

  81. J. M. Kincaid, G. Stell, and C. K. Hall, J. Chem. Phys. 65, 2161 (1976).

    Article  ADS  Google Scholar 

  82. E. A. Jagla, J. Phys. Cond. Mat. 11, 10251–10258 (1999).

    Article  ADS  Google Scholar 

  83. E. A. Jagla, Phys. Rev. E 63, 061509 (2001).

    Article  ADS  MATH  Google Scholar 

  84. M. R. Sadr-Lahijany, A. Scala, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. Lett. 81, 4895–4898 (1998).

    Article  ADS  Google Scholar 

  85. A. Scala, M. R. Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 63 041202 (2001).

    Article  ADS  Google Scholar 

  86. A. Scala, M. Reza Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and H. E. Stanley, J. Stat. Phys. 100, 97–106 (2000).

    Article  MATH  Google Scholar 

  87. G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, Nature 409, 692–695 (2001).

    Article  ADS  Google Scholar 

  88. G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 66, 051206 (2002).

    Article  ADS  Google Scholar 

  89. A. Skibinsky, S. V. Buldyrev, G. Franzese, G. Malescio, and H. E. Stanley, Phys. Rev. E 69, 061206 (2004).

    Article  ADS  Google Scholar 

  90. G. Malescio, G. Franzese, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 71, 061504 (2005).

    Article  ADS  Google Scholar 

  91. G. Franzese, J. Mol. Liq. 136, 267 (2007).

    Article  Google Scholar 

  92. P. Kumar, S. V. Buldyrev, F. Sciortino, E. Zaccarelli, and H. E. Stanley, Phys. Rev. E 72, 021501 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  93. P. G. Debenedetti, V. S. Raghavan, and S. S. Borick, J. Phys. Chem. 95, 4540–4551 (1991).

    Article  Google Scholar 

  94. V. B. Henriques and M. C. Barbosa, Phys. Rev. E 71, 031504 (2005).

    Article  ADS  Google Scholar 

  95. B. Guillot and Y. Guissani, J. Chem. Phys. 119, 11740–11752 (2003).

    Article  ADS  Google Scholar 

  96. V. B. Henriques, N. Guisoni, M. A. Barbosa, M. Thielo, and M. C. Barbosa, Molec. Phys. 103, 3001–3007 (2005).

    Article  ADS  Google Scholar 

  97. A. Barros de Oliveira, G. Franzese, P. A. Netz, and M. C. Barbosa, J. Chem. Phys. 128, 064901 (2008).

    Article  ADS  Google Scholar 

  98. E. A. Jagla, J. Chem. Phys. 111, 8980–8986 (1999).

    Article  ADS  Google Scholar 

  99. T. H. Hall, L. Merril, and J. D. Barnett, Science 146, 1297–1299 (1964).

    Article  ADS  Google Scholar 

  100. A. Scala, F. W. Starr, E. La Nave, F. Sciortino, and H. E. Stanley, Nature 406, 166–169 (2000).

    Article  ADS  Google Scholar 

  101. Z. Yan, S. V. Buldyrev, N. Giovambattista, and H. E. Stanley, Phys. Rev. Lett. 95, 130604 (2005).

    Article  ADS  Google Scholar 

  102. Z. Yan, S. V. Buldyrev, N. Giovambattista, P. G. Debenedetti, and H. E. Stanley, Phys. Rev. E 73, 051204 (2006).

    Article  ADS  Google Scholar 

  103. Z. Yan, S. V. Buldyrev, P. Kumar, N. Giovambattista, P. G. Debenedetti, and H. E. Stanley, Phys. Rev. E 76, 051201 (2007).

    Article  ADS  Google Scholar 

  104. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, U. Wanderlingh, L. Liu, C.-Y. Mou, and S.-H. Chen, J. Chem. Phys. 124, 161102 (2006).

    Article  ADS  Google Scholar 

  105. L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Proc. Natl. Acad. Sci. 102, 16558–16562 (2005).

    Article  ADS  Google Scholar 

  106. A. Faraone, L. Liu, C.-Y. Mou, C.-W. Yen, and S.-H. Chen, J. Chem. Phys. 121, 10843–10846 (2004).

    Article  ADS  Google Scholar 

  107. L. Liu, Ph.D. thesis, M.I.T., September 2005.

    Google Scholar 

  108. M. A. Anisimov, J. V. Sengers, and J. M. H. Levelt-Sengers, in Aqueous System at Elevated Temperatures and Pressures: Physical Chemistry in Water, Stream and Hydrothermal Solutions, edited by D. A. Palmer, R. Fernandez-Prini, and A. H. Harvey (Elsevier, Amsterdam, 2004).

    Google Scholar 

  109. M.-C. Bellissent-Funel, ed., Hydration Processes in Biology: Theoretical and Experimental Approaches [Proc. NATO Advanced Study Institutes, Vol. 305] (IOS Press, Amsterdam,1999).

    Google Scholar 

  110. C. A. Angell, R. D. Bressel, M. Hemmatti, E. J. Sare, and J. C. Tucker, Phys. Chem. Chem. Phys. (JCCP) 2, 1559–1566 (2000).

    Google Scholar 

  111. P. G. Debenedetti, J. Phys.:Condens. Matter 15, R1669–R1726 (2003).

    Article  ADS  Google Scholar 

  112. C. A. Angell, J. Phys. Chem. 97, 6339–6341 (1993).

    Article  Google Scholar 

  113. F. W. Starr, C. A. Angell, and H. E. Stanley, Physica A 323, 51–66 (2003).

    Article  ADS  Google Scholar 

  114. J. Horbach and W. Kob, Phys. Rev. B 60, 3169–3181 (1999).

    Article  ADS  Google Scholar 

  115. E. W. Lang and H. D. Lüdemann, Angew Chem. Intl. Ed. Engl. 21, 315–329 (1982).

    Article  Google Scholar 

  116. F. X. Prielmeier, E. W. Lang, R. J. Speedy, H. D. Lüdemann, Phys. Rev. Lett. 59, 1128–1131 (1987).

    Article  ADS  Google Scholar 

  117. K. Ito, C. T. Moynihan, and C. A. Angell, Nature 398, 492–495 (1999).

    Article  ADS  Google Scholar 

  118. H. Tanaka, J. Phys.: Condens. Matter 15, L703–L711 (2003).

    Article  ADS  Google Scholar 

  119. J. Swenson, H. Jansson, W. S. Howells, and S. Longeville, J. Chem. Phys. 122, 084505 (2005).

    Article  ADS  Google Scholar 

  120. S. Sastry and C. A. Angell, Nat. Mater. 2, 739–743 (2003).

    Article  ADS  Google Scholar 

  121. I. Saika-Voivod, P. H. Poole, and F. Sciortino, Nature 412, 514–517 (2001).

    Article  ADS  Google Scholar 

  122. P. Kumar, G. Franzese, and H. E. Stanley, Phys. Rev. Lett. 100, 084102 (2008).

    Article  Google Scholar 

  123. L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley (preprint).

    Google Scholar 

  124. P. Kumar, S. V. Buldyrev, S. L. Becker, P. H. Poole, F. W. Starr, and H. E. Stanley, Proc. Natl. Acad. Sci. USA 104, 9575–9579 (2007).

    Article  ADS  Google Scholar 

  125. P. Kumar, S. V. Buldyrev, and H. E. Stanley (submitted).

    Google Scholar 

  126. S.-H. Chen, F. Mallamace, C.-Y. Mou, M. Broccio, C. Corsaro, and A. Faraone, Proc. Nat. Acad. Sciences USA 103, 12974–12978 (2006)

    Article  ADS  Google Scholar 

  127. M. G. Mazza, N. Giovambattista, F. W. Starr, and H. E. Stanley, Phys. Rev. Lett. 96, 057803 (2006).

    Article  ADS  Google Scholar 

  128. M. G. Mazza, N. Giovambattista, H. E. Stanley, and F. W. Starr, Phys. Rev. E 76, 031202 (2007).

    Article  ADS  Google Scholar 

  129. S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, Proc. Natl. Acad. Sci. USA 103, 9012 (2006).

    Article  ADS  Google Scholar 

  130. F. Mallamace, S.-H. Chen, M. Broccio, C. Corsaro, V. Crupi, D. Majolino, V. Venuti, P. Baglioni, E. Fratini, C. Vannucci, and H. E. Stanley, J. Chem. Phys. 127, 045104 (2007).

    Article  ADS  Google Scholar 

  131. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, N. Gonzalez-Segredo, H. E. Stanley, and S.-H. Chen, Euro. Phys. J. 161, 19 (2008).

    Google Scholar 

  132. P. Kumar, S. V. Buldyrev, F. W. Starr, N. Giovambattista, and H. E. Stanley, Phys. Rev. E 72, 051503 (2005).

    Article  ADS  Google Scholar 

  133. P. Kumar, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Phys. Rev. E 75, 011202 (2007).

    Article  ADS  Google Scholar 

  134. S. Han, P. Kumar, and H. E. Stanley, Phys. Rev. E 77, 030201(R) (2008).

    Article  ADS  Google Scholar 

  135. D. Liu, Y. Zhang, C.-C. Chen, C.-Y. Mou, P. H. Poole, and S.-H. Chen, Proc. Natl. Acad. Sci. USA 104, 9570–9574 (2007).

    Article  ADS  Google Scholar 

  136. D. A. Fuentevilla and M. A. Anisimov, Phys. Rev. Lett. 97, 195702 (2006).

    Article  ADS  Google Scholar 

  137. T. Morishita, Phys. Rev. Lett. 97, 165502 (2006).

    Article  ADS  Google Scholar 

  138. L. Xu, S. V. Buldyrev, C. A. Angell, and H. E. Stanley, Phys. Rev. E 74, 031108 (2006).

    Article  ADS  Google Scholar 

  139. F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.-Y. Mou, and S.-H. Chen, Proc. Natl. Acad. Sci. USA 104, 18387–18391 (2007).

    Article  ADS  Google Scholar 

  140. F. Mallamace, C. Corsaro, M. Broccio, C. Branca, N. González-Segredo, J. Spooren, S.-H. Chen, and H. E. Stanley PNAS 104, 18387 (2008).

    Google Scholar 

  141. S.-H. Chen, F. Mallamace, L. Liu, D. Z. Liu, X. Q. Chu, Y. Zhang, C. Kim, A. Faraone, C.-Y. Mou, E. Fratini, P. Baglioni, A. I. Kolesnikov, and V. Garcia-Sakai, in Fifth International Workshop on Complex Systems, Sendai, Japan, edited by M. Tokuyama, I. Oppenheim, and H. Nishiyama, AIP Conf. Proc. 982,(2008).

    Google Scholar 

  142. S. Maruyama, K. Wakabayashi, and M. Oguni, AIP Conf. Proc. 708, 675–676 (2004).

    Article  ADS  Google Scholar 

  143. U. Raviv, P. Laurat, and J. Klein, Nature 413, 51–54 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stanley, H.E. et al. (2009). Liquid Polyamorphism and the Anomalous Behavior of Water. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_20

Download citation

Publish with us

Policies and ethics