Skip to main content

Growth Methods and Properties of High Purity III-V Nanowires by Molecular Beam Epitaxy

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

The synthesis and properties of catalyst-free III–V nanowires with MBE is reviewed. The two main methods are Selective Area Epitaxy and gallium-assisted synthesis. The growth mechanisms are reviewed, along with the design possibilities of each technique. Finally, the excellent structure and ultra-high purity are presented by Raman and Photoluminescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. M. T. Björk, O. Hayden, H. Schmid, H. Riel, W. Riess: Vertical surround-gated silicon nanowire impact ionization field-effect transistors, Applied Physics Letters 90, 142110 (2007) doi:10.1063/1.2720640 http://link.aip.org/link/?APL/90/142110/1

  2. R. Chau, S. Datta, A. Majumdar: Opportunities and challenges of iii-v nanoelectronics for future high-speed, low-power logic applications, Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC ’05. IEEE SP-4 pp. (30 Oct.–2 Nov. 2005) doi 10.1109/CSICS.2005.1531740

    Google Scholar 

  3. J. Knoch, W. Riess, J. Appenzeller: Outperforming the conventional scaling rules in the quantum-capacitance limit, Electron Device Letters, IEEE 29, 372–374 (April 2008) 10.1109/LED.2008.917816

    Google Scholar 

  4. W. Lu, J. Xiang, B. P. Timko, Y. Wu, C. M. Lieber: One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proceedings of the National Academy of Sciences 102, 10046–10051 (2005) doi:10.1073/pnas.0504581102 http://www.pnas.org/cgi/content/abstract/102/29/10046

  5. A. Guichard, D. Barsic, S. Sharma, T. Kamins, M. Brongersma: Tunable light emission from quantum-confined excitons in tisi2-catalyzed silicon nanowires, Nano Letters 6, 2140–2144 (2006) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/nl061287m

  6. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device, Journal of Heat Transfer 125, 881–888 (2003) doi:10.1115/1.1597619 http://link.aip.org/link/?JHR/125/881/1

  7. J. Maiolo, B. Kayes, M. Filler, M. Putnam, M. Kelzenberg, H. Atwater, N. Lewis: High aspect ratio silicon wire array photoelectrochemical cells, Journal of the American Chemical Society 129, 12346–12347 (2007) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/ja074897c

    Google Scholar 

  8. S. D. Brotherton, J. E. Lowther: Electron and hole capture at au and pt centers in silicon, Physical Review Letters 44, 606–609 (1980) doi:10.1103/PhysRevLett.44.606

    Google Scholar 

  9. Y. Wang, V. Schmidt, S. Senz, U. Gosele: Epitaxial growth of silicon nanowires using an aluminium catalyst, Nature Nanotechnology 1, 186–189 (2006) http://dx.doi.org/10.1038/nnano.2006.133

  10. T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, J. S. Harris: Ti-catalyzed si nanowires by chemical vapor deposition: Microscopy and growth mechanisms, Journal of Applied Physics 89, 1008–1016 (2001) doi:10.1063/1.1335640 http://link.aip.org/link/?JAP/89/1008/1

    Google Scholar 

  11. B. Mandl, J. Stangl, T. Martensson, A. Mikkelsen, J. Eriksson, L. Karlsson, G. Bauer, L. Samuelson, W. Seifert: Au-free epitaxial growth of inas nanowires, Nano Letters 6, 1817–1821 (2006) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/nl060452v

    Google Scholar 

  12. A. F. i Morral, C. Colombo, G. Abstreiter, J. Arbiol, J. R. Morante: Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Applied Physics Letters 92, 063112 (2008) doi:10.1063/1.2837191 http://link.aip.org/link/?APL/92/063112/1

  13. G. Schedelbeck, W. Wegscheider, M. Bichler, G. Abstreiter: Coupled quantum dots fabricated by cleaved edge overgrowth: From artificial atoms to molecules, Science 278, 1792–1795 (1997) doi:10.1126/science.278.5344.1792 http://www.sciencemag.org/cgi/content/abstract/278/5344/1792

    Google Scholar 

  14. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, G. Weimann: Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a gaas/algaas structure, Physical Review Letters 73, 1138–1141 (1994) doi:10.1103/PhysRevLett.73.1138

    Google Scholar 

  15. S. F. Fischer, G. Apetrii, U. Kunze, D. Schuh, G. Abstreiter: Energy spectroscopy of controlled coupled quantum-wire states, Nature Physics 2, 91–96 (2006) http://dx.doi.org/10.1038/nphys205

  16. T. Egeler, G. Abstreiter, G. Weimann, T. Demel, D. Heitmann, P. Grambow, W. Schlapp: Anisotropic plasmon dispersion in a lateral quantum-wire superlattice, Physical Review Letters 65, 1804–1807 (1990) doi:10.1103/PhysRevLett.65.1804

    Google Scholar 

  17. M. Heiß, E. Riedlberger, D. Spirkoska, M. Bichler, G. Abstreiter, A. F. i. Morral: Growth mechanisms and optical properties of gaas-based semiconductor microstructures by selective area epitaxy, Journal of Crystal Growth 310, 1049–1056 (2008) http://www.sciencedirect.com/science/article/B6TJ6-4RHFVM6-1/1/b4df6ccca6568fdb6a0605ad3db318ab

  18. J. M. Hong, S. Wang, T. Sands, J. Washburn, J. D. Flood, J. L. Merz, T. Low: Selective-area epitaxy of gaas through silicon dioxide windows by molecular beam epitaxy, Applied Physics Letters 48, 142–144 (1986) doi:10.1063/1.96977 http://link.aip.org/link/?APL/48/142/1

  19. P. Mohan, J. Motohisa, T. Fukui: Controlled growth of highly uniform, axial/radial direction-defined, individually addressable inp nanowire arrays, Nanotechnology 16, 2903–2907 (2005) http://stacks.iop.org/0957-4484/16/2903

  20. R. Fisher, J. Klem, J. T. Drummond, E. R. Thorne, W. Kopp, H. Morkoc, Y. A. Cho, J Appl. Phys. 54, 2058–2510 (1983)

    Google Scholar 

  21. J. Márquez, L. Geelhaar, K. Jacobi: Atomically resolved structure of inas quantum dots, Applied Physics Letters 78, 2309–2311 (2001) doi:10.1063/1.1365101 http://link.aip.org/link/?APL/78/2309/1

  22. N. Moll, A. Kley, E. Pehlke, M. Scheffler: Gaas equilibrium crystal shape from first principles, Physical Review B 54, 8844–8855 (1996) doi:10.1103/PhysRevB.54.8844

    ADS  Google Scholar 

  23. J. Márquez, P. Kratzer, L. Geelhaar, K. Jacobi, M. Scheffler: Atomic structure of the stoichiometric gaas(114) surface, Physical Review Letters 86, 115–118 (2001) doi:10.1103/PhysRevLett.86.115

    Google Scholar 

  24. C. Chatillon, D. Chatain: Congruent vaporization of gaas(s) and stability of ga(l) droplets at the gaas(s) surface, Journal of Crystal Growth 151, 91–101 (1995) http://www.sciencedirect.com/science/article/B6TJ6-3Y5MNBT-CW/1/618e13e48368370025ebddc5476f2a8a

    ADS  Google Scholar 

  25. J.-y. Shen, C. Chatillon: Thermodynamic calculations of congruent vaporization in iii-v systems; applications to the in-as, ga-as and ga-in-as systems, Journal of Crystal Growth 106, 543–552 (1990) http://www.sciencedirect.com/science/article/B6TJ6-46D26H6-2C/1/61e6f54efa66285c41035fc80d35848d

  26. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. F. i Morral: Ga-assisted catalyst-free growth mechanism of gaas nanowires by molecular beam epitaxy, Physical Review B (Condensed Matter and Materials Physics) 77, 155326 (2008) doi:10.1103/PhysRevB.77.155326 http://link.aps.org/abstract/PRB/v77/e155326

  27. M. Watt, C. M. S. Torres, H. E. G. Arnot, S. P. Beaumont: Surface phonons in gaas cylinders, Semiconductor Science and Technology 5, 285–290 (1990) http://stacks.iop.org/0268-1242/5/285

  28. D. Spirkoska, G. Abstreiter, A. F. i Morral: Size dependence of the bulk and surface phonon modes of gallium arsenide nanowires as measured by raman spectroscopy, Nanotechnology 19, 435704 (2008)

    Google Scholar 

  29. J. Van Laar, J. J. Scheer: Influence of volume dope on fermi level position at gallium arsenide surfaces, Surface Science 8, 342–356 (1967) http://www.sciencedirect.com/science/article/B6TVX-46T3C5Y-29B/1/2da1fa525f4de8a02322ee95cea78ee0

    Google Scholar 

  30. T. Martensson, C. Svensson, B. Wacaser, M. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. Wallenberg, L. Samuelson: Epitaxial iii-v nanowires on silicon, Nano Letters 4, 1987–1990 (2004) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/nl0487267

  31. M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Muñoz, R. Beresford: The effect of the iii/v ratio and substrate temperature on the morphology and properties of gan- and aln-layers grown by molecular beam epitaxy on si(1 1 1), Journal of Crystal Growth 183, 23–30 (1998) http://www.sciencedirect.com/science/article/B6TJ6-3W8STD4-4/1/ceb4d2577504cc8815a0de8507ed2712

  32. L. Cerutti, J. Ristić, S. Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, J. M. Calleja: Wurtzite gan nanocolumns grown on si(001) by molecular beam epitaxy, Applied Physics Letters 88, 213114 (2006) doi:10.1063/1.2204836 http://link.aip.org/link/?APL/88/213114/1

  33. Y. Cui, X. Duan, J. Hu, C. Lieber: Doping and electrical transport in silicon nanowires, Journal of Physical Chemistry B 104, 5213–5216 (2000) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/jp0009305

    Google Scholar 

  34. K.-K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, S. W. Novak: Structural and electrical properties of trimethylboron-doped silicon nanowires, Applied Physics Letters 85, 3101–3103 (2004) doi:10.1063/1.1792800 http://link.aip.org/link/?APL/85/3101/1

  35. S. Bae, C. Na, J. Kang, J. Park: Comparative structure and optical properties of ga-, in-, and sn-doped zno nanowires synthesized via thermal evaporation, Journal of Physical Chemistry B 109, 2526–2531 (2005) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/jp0458708

  36. G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M. A. Reed, G. Wang, D. Moses, J. Zhang: Current rectification in a single gan nanowire with a well-defined p–n junction, Applied Physics Letters 83, 1578–1580 (2003) doi:10.1063/1.1604190 http://link.aip.org/link/?APL/83/1578/1

  37. M. V. Fernández-Serra, C. Adessi, X. Blase: Surface segregation and backscattering in doped silicon nanowires, Physical Review Letters 96, 166805 (2006) doi:10.1103/PhysRevLett.96.166805 http://link.aps.org/abstract/PRL/v96/e166805

  38. N. Skold, L. Karlsson, M. Larsson, M.-E. Pistol, W. Seifert, J. Tragardh, L. Samuelson: Growth and optical properties of strained gaas-gaxin1-xp core-shell nanowires, Nano Letters 5, 1943–1947 (2005) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/nl051304s

  39. N. Skold, J. Wagner, G. Karlsson, T. Hernan, W. Seifert, M.-E. Pistol, L. Samuelson: Phase segregation in alinp shells on gaas nanowires, Nano Letters 6, 2743–2747 (2006) http://pubs3.acs.org/acs/journals/doilookup?in$_$doi=10.1021/nl061692d

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spirkoska, D., Colombo, C., Heiß, M., Heigoldt, M., Abstreiter, G., i Morral, A.F. (2009). Growth Methods and Properties of High Purity III-V Nanowires by Molecular Beam Epitaxy. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_2

Download citation

Publish with us

Policies and ethics