Skip to main content

Organometallic Nanojunctions Probed by Different Chemistries: Thermo-, Photo-, and Mechano-Chemistry

  • Chapter

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

Based on ab-initio simulations, three different types of chemistry, namely thermo-, photo-, and mechano-chemistry are compared for organometallic nanojunctions. In the first part we provide the first direct comparison of mechanical versus thermal activation of bond breaking. Study of thiolate/copper interfacesthiolate/copper interfaces provides evidence for vastly different reaction pathways and product classes. This is understood in terms of directional mechanical manipulation of coordination numbers and system fluctuations in the process of mechanical activation. In the second part mechanically and opto-mechanically controlled azobenzene (AB) switch based on AB-gold break-junction have been studied. It was found that both cistrans and transcis mechanically driven switchings in the lowest singlet state are possible. Bidirectional optical switching of mechanically strained AB through first excited singlet state was also predicted, provided that the length of the molecule is adjusted towards the target isomer equilibrium length. The simulations reveal the paramount importance played by mechanical activation for this class of systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellenbogen, J.C., Love, J.C., Architectures for Molecular Electronic Computers. IEEE, New York, (2000)

    Google Scholar 

  2. Joachim, C., Gimzewski, J.K., Aviram, A., Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541–548 (2000)

    Article  ADS  Google Scholar 

  3. Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y.,Petta, J.R., Rinkoski, M., Sethna, J.P., Abruña, H.D., McEuen,P.L., Ralph, D.C., Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722–725 (2002)

    Article  ADS  Google Scholar 

  4. Liang, W., Shores, M.P., Bockrath, M., Long, J.R., Park, H., Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002)

    Article  ADS  Google Scholar 

  5. Carey Lea, M., Disruption of the silver haloid molecule by mechanical force, Phil. Mag. 34, 46–50 (1892)

    Google Scholar 

  6. Beyer, M.K., Clausen-Schaumann, H., Mechanochemistry: The mechanical activation of covalent bonds, Chem. Rev. 105, 2921–2948 (2005)

    Article  Google Scholar 

  7. Frank, I., Mechanically induced chemistry: New perspective on the nanoscale, Angew. Chem. Int. Ed. 45, 852–854 (2006)

    Article  Google Scholar 

  8. Granick, S., Bae, S. C., Physical chemistry – Stressed molecules break down, Nature 440, 160–161 (2006)

    Article  ADS  Google Scholar 

  9. Rosen, B.M., Percec, V., Mechanochemistry – A reaction to stress, Nature 446, 381–382 (2007)

    Article  ADS  Google Scholar 

  10. Grandbois, M., et al., How strong is a covalent bond? Science 283, 1727–1730 (1999)

    Article  ADS  Google Scholar 

  11. Saitta, A.M., et al., Influence of a knot on the strength of a polymer strand, Nature 399, 46–48 (1999)

    Article  ADS  Google Scholar 

  12. Aktah, D., Frank, I.: Breaking bonds by mechanical stress: When do electrons decide for the other side? J. Am. Chem. Soc. 124, 3402–3406 (2002)

    Article  Google Scholar 

  13. Krüger, D., et al., Pulling monatomic gold wires with single molecules: An ab initio simulation, Phys. Rev. Lett. 89, 186402 (2002)

    Article  ADS  Google Scholar 

  14. Krüger, D., et al., Towards “mechanochemistry”: Mechanically induced isomerizations of thiolate-gold clusters, Angew. Chem. Int. Ed. 42, 2251–2253 (2003)

    Article  Google Scholar 

  15. Vélez, P., Dassie, S.A., Leiva, E.P.M., First principles calculations of mechanical properties of 4,4(’)-bipyridine attached to Au nanowires, Phys. Rev. Lett. 95, 045503 (2005)

    Article  ADS  Google Scholar 

  16. Muraoka, T., Kinbara, K., Aida, T., Mechanical twisting of a guest photoresponsive host, Nature 440, 512–515 (2006)

    Article  ADS  Google Scholar 

  17. Novaes, F. D., et al., Oxygen clamps in gold nanowires, Phys. Rev. Lett. 96, 016104 (2006)

    Article  ADS  Google Scholar 

  18. Sheiko, S. S., et al., Adsorption-induced scission of carbon–carbon bonds, Nature 440, 191–194 (2006)

    Article  ADS  Google Scholar 

  19. Hickenboth,C. R., et al., Biasing reaction pathways with mechanical force, Nature 446, 423–427 (2007)

    Article  ADS  Google Scholar 

  20. Gimzewski, J. K. and Joachim, C., Nanoscale science of single molecules using local probes, Science 283 1683–1688 (1999)

    Article  ADS  Google Scholar 

  21. Moresco, F. and Gourdon, A., Scanning tunneling microscopy experiments on single molecular landers, PNAS 102, 8809–8814 (2005)

    Article  ADS  Google Scholar 

  22. Otero, R., Rosei, F., Besenbacher, F., Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces, Ann. Rev. Phys. Chem. 57, 497–525 (2006)

    Article  ADS  Google Scholar 

  23. Smit R.H.M., Noat, Y., Untiedt, C., Lang, N.D., van Hemert, M.C., van Ruitenbeek, J.M., Measurement of the conductance of a hydrogen molecule, Nature 419, 906–909 (2002)

    Article  ADS  Google Scholar 

  24. Liu, G. Y., Xu, S., Qian, Y.L., Nanofabrication of self-assembled monolayers using scanning probe lithography, Acc. Chem. Res. 33, 457–466 (2000)

    Article  Google Scholar 

  25. James, D.K. and Tour, J.M., Electrical measurements in molecular electronics, Chem. Mat. 16, 4423–4435 (2004)

    Article  Google Scholar 

  26. Salaita, K., Wang, Y.H., Mirkin, C.A., Applications of dip–pen nanolithography, Nat. Nanotech. 2, 145–155 (2007)

    Article  ADS  Google Scholar 

  27. Chen, F., et al., Measurement of single-molecule conductance, Ann. Rev. Phys. Chem. 58, 535–564 (2007)

    Article  ADS  Google Scholar 

  28. Schreiber, F., Self-assembled monolayers: from “simple” model systems to biofunctionalized interfaces, J. Phys.: Condens. Matter 16, R881–R900 (2004)

    Article  ADS  Google Scholar 

  29. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105, 1103–1169 (2005)

    Article  Google Scholar 

  30. Konôpka, M., Turanský, R., Reichert, J., Fuchs, H., Marx, D., štich, I., Mechanochemistry and thermochemistry are different: Stress-induced strengthening of chemical bonds. Phys. Rev. Lett. 100, 1155031–1–4 (2008)

    Article  Google Scholar 

  31. Kondoh, H., Nozoye, H., Molecular process of adsorption and desorption of alkanethiol monolayers on Au(111). J. Chem. Phys. 111, 1175–1184 (1999)

    Article  ADS  Google Scholar 

  32. Konôpka, M., Rousseau, R., štich, I., Marx, D., Detaching thiolates from copper and gold clusters: Which bonds to break? J. Am. Chem. Soc. 126, 12103–12111 (2004)

    Article  Google Scholar 

  33. Konôpka, M., Rousseau, R., štich, I., Marx, D., Electronic origin of disorder and diffusion at a molecule-Metal interface: Self-assembled monolayers of CH3–S on Cu(111). Phys. Rev. Lett. 95, 096102–1–4 (2005)

    Article  ADS  Google Scholar 

  34. Jackson, G.J., et al., Following local adsorption sites through a surface chemical reaction: CH3SH on Cu(111). Phys. Rev. Lett. 84, 119 (2000).

    Article  ADS  Google Scholar 

  35. Lai, Y.-H., et al., Adsorption and thermal decomposition of alkanethiols on Cu(110). J. Phys. Chem. B 106, 5438 (2002).

    Article  Google Scholar 

  36. Marx, D., Hutter, J., Ab initio molecular dynamics: Theory and implementation. In: Grotendorst, J. (ed) Modern Methods and Algorithms of Quantum Chemistry. NIC, FZ Jülich (2000), pp. 301–449; for downloads see: www.theochem.ruhr-uni-bochum.de/go/cprev.html

    Google Scholar 

  37. Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865–3868 (1996); Phys. Rev. Lett. 78, 1396–1396 (1997)

    Article  ADS  Google Scholar 

  38. CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001

    Google Scholar 

  39. Dürr, H., Bouas-Laurent, H. (ed.), Photochromism. Molecules and Systems. Elsevier, Amsterdam (1990)

    Google Scholar 

  40. Hartley, G.S., The Cis–form of Azobenzene. Nature 140, 281–281 (1937)

    Article  ADS  Google Scholar 

  41. Hugel, T., Holland, N.B., Cattani, A., Moroder, L., Seitz, M., Gaub, H.E., Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002)

    Article  ADS  Google Scholar 

  42. Reichert, J., Klein, S., Konôpka, M., Turanský, R., Marx, D., Štich, I., Fuchs, H., Conductance of an illuminated metal–molecule–metal junction utilizing a near–field probe as counterelectrode. [Submitted to Rev. Sci. Inst.(2008)]

    Google Scholar 

  43. Dulić, D., van der Molen, S.J., Kudernac, T., Jonkman, H.T., de Jong, J.J.D., Bowden, T.N., van Esch, J., Feringa, B.L., van Wees, B.J., One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402–1–4 (2003)

    Article  ADS  Google Scholar 

  44. Cimelli, C., Granucci, G., Persio, M., Are azobenzenophanes rotation-restricted? J. Chem. Phys. 123, 174317–1–10 (2005)

    Article  ADS  Google Scholar 

  45. Nonnenberg, C., Gaub, H., Frank, I., First-principles simulation of the photoreaction of a capped azobenzene: The rotational pathway is feasible. Chem. Phys. Chem. 7, 1455–1461 (2006)

    Google Scholar 

  46. Turanský, R., Konôpka, M., Reichert, J., Fuchs, H., Marx, D., Štich, I., Mechanical and opto-mechanical switching of azobenzene metal-organic junctions. Submitted (2008)

    Google Scholar 

  47. see http://www.accelrys.com

    Google Scholar 

  48. Jacobsen, K.W., Norskov, J.K., Puska, M.J., Interatomic interactions in the effective-medium theory, Phys. Rev. B 35, 7423–7442 (1987)

    Article  ADS  Google Scholar 

  49. Frank, I., Hutter, J., Marx, D., Parrinello, M., Molecular dynamics in low-spin excited states, J. Chem. Phys. 108, 4060–4069 (1998)

    Article  ADS  Google Scholar 

  50. Grimm, S., Nonnenberg, C., Frank, I., Restricted open-shell Kohn–Sham theory for π - π* transitions. I. Polyenes, cyanines, and protonated imines, J. Chem. Phys. 119, 11574–11584 (2003)

    Article  ADS  Google Scholar 

  51. Goedecker, S., Teter, M., Hutter, J., Separable dual–space Gaussian pseudopotentials, Phys. Rev. B 54, 1703–1710 (1996)

    Article  ADS  Google Scholar 

  52. Hartwigsen, C., Goedecker, S., Hutter, J., Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998)

    Article  ADS  Google Scholar 

  53. Andersson, J.-Å., Petterson, R., Tegnér, L., Flash photolysis experiments in the vapour phase at elevated temperatures I: Spectra of azobenzene and the kinetics of its thermal cis–trans isomerization. J. Photochem. 20, 17–32 (1982)

    Article  Google Scholar 

  54. Fliegl, H., Köhn, A., Hättig, C., Ahlrichs, R.: Ab Initio Calculations of the Vibrational and Electronic Spectra of trans– and cis–Azobenzene. J. Am. Chem. Soc. 125, 9821–9827 (2003)

    Article  Google Scholar 

  55. Turanský, R., Konôpka, M., Reichert, J., Fuchs, H., Marx, D., Štich, I.: (In preparation)

    Google Scholar 

  56. Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L., Orlandi, G.: On the Mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1, J. Am. Chem. Soc. 126, 3234–3243 (2004)

    Google Scholar 

  57. Gagliardi, L., Orlandi, G., Bernardi, F., Cembran, A., Garavelli, M., A theoretical study of the lowest electronic states of azobenzene: The role of torsion coordinate in the cis-trans photoisomerization, Theor. Chem. Acc. 111, 363–372 (2004)

    Google Scholar 

  58. Choi, B.-Y., Kahng, S.-J., Kim, S., Kim, H., Kim, H.W., Song, Y.J., Ihm, J., Kuk, Y., Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy Study, Phys. Rev. Lett. 96, 156106–1–4 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konôpka, M., Turanský, R., Doltsinis, N.L., Marx, D., Štich, I. (2009). Organometallic Nanojunctions Probed by Different Chemistries: Thermo-, Photo-, and Mechano-Chemistry. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_18

Download citation

Publish with us

Policies and ethics