Skip to main content

Transport in 2DEGs and Graphene: Electron Spin vs. Sublattice Spin

  • Chapter
  • 2092 Accesses

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

We propose a quasiclassical model which describes kinetics of classical particles having an additional quantum degree of freedom. The later might be an electron spin in two dimensional electron gases, or sublattice index in graphene. As an application, we focus on current-induced spin accumulation in a 2DEG with spin-orbit coupling of both the Rashba and the Dresselhaus type. This phenomenon sometimes also referred to as the kinetic magnetoelectric or inverse spin-galvanic effect and shows for the system under study significant anisotropies. The approach developed here is also applied to the description of carrier transport in graphene where low energy excitations have, with respect to the sublattice degree of freedom, a similar chiral structure as the usual 2DEG with Rashba spin-orbit interaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. D. Ganichev, E. L. Ivchenko, V. V. Bel’kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, W. Prettl: Spin-galvanic effect, Nature 417, 153 (2002)

    Google Scholar 

  2. S. D. Ganichev, S. N. Danilov, P. Schneider, V. V. Bel’kov, L. E. Golub, W. Wegscheider, D. Weiss, W. Prettl: Electric current-induced spin orientation in quantum well structures, J. Magn. Magn. Mater. 300, 127 (2006)

    Article  ADS  Google Scholar 

  3. A. Y. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, N. S. Averkiev: Current-induced spin polarization at a single heterojunction, Appl. Phys. Lett. 85, 5929 (2004)

    Article  ADS  Google Scholar 

  4. C. L. Yang, H. T. He, L. Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, W. K. Ge: Spectral dependence of spin photocurrent and current-induced spin polarization in an In Ga As/In Al As two-dimensional electron gas, Phys. Rev. Lett. 96, 186605 (2006)

    Article  ADS  Google Scholar 

  5. N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, D. D. Awschalom: Current-induced polarization and the spin hall effect at room temperature, Phys. Rev. Lett. 97, 126603 (2006)

    Article  ADS  Google Scholar 

  6. V. M. Edelstein: Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Comm. 73, 233 (1990)

    Article  ADS  Google Scholar 

  7. A. G. Aronov, Y. B. Lyanda-Geller, G. E. Pikus: The polarization of electrons by an electric current, JETP 100, 973 (1991)

    Google Scholar 

  8. J.-I. Inoue, G. E. W. Bauer, L. W. Molenkamp: Diffuse transport and spin accumulation in rashba two-dimensional electron gas, Phys. Rev. B 67, 33104 (2003)

    Article  ADS  Google Scholar 

  9. Z. Huang, L. Hu: Controllable kinetic magnetoelectric effect in two-dimensional electron gases with both rashba and dresselhaus spin-orbit couplings, Phys. Rev. B 73, 113312 (2006)

    Article  ADS  Google Scholar 

  10. Y. Jiang, L. Hu: Kinetic magnetoelectric effect in a two-dimensional semiconductor strip due to boundary-confinement-induced spin-orbit coupling, Phys. Rev. B 74, 75302 (2006)

    Article  ADS  Google Scholar 

  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov: Two-dimensional gas of massless dirac fermions in graphene, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  12. Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim: Experimental observation of the quantum hall effect and berry’s phase in graphene, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  13. S. Cho, M. S. Fuhrer: Charge transport and inhomogeneity near the charge neutrality point in Graphene (unpublished, arXiv:0705.3239)

    Google Scholar 

  14. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, M. Ishigami: Charged-impurity scattering in graphene, Nature Physics 4, 377–381 (2008)

    Article  ADS  Google Scholar 

  15. Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. D. Sarma, H. L. Stormer, P. Kim: Measurement of scattering rate and minimum conductivity in graphene, Phys. Rev. Lett. 99, 246803 (2007)

    Article  ADS  Google Scholar 

  16. Y. Bychkov, E. Rashba: Properties of 2D electron gas with lifted spectral degeneracy, JEPT Lett. 39, 78 (1984)

    ADS  Google Scholar 

  17. G. Dresselhaus: Spin-orbit coupling effects in zinc blende structures, Phys. Rev. 100, 580 (1955)

    Article  MATH  ADS  Google Scholar 

  18. S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. D. Boeck, G. Borghs, W. Wegscheider, D. Weiss, W. Prettl: Experimental separation of rashba and dresselhaus spin splittings in semiconductor quantum wells, Phys. Rev. Lett. 92, 256601 (2004)

    Article  ADS  Google Scholar 

  19. J. Schliemann, D. Loss: Anisotropic transport in a two-dimensional electron gas in the presence of spin-orbit coupling, Phys. Rev. B 68, 165311 (2003)

    Article  ADS  Google Scholar 

  20. N. S. Averkiev, L. E. Golub: Giant spin relaxation anisotropy in zinc-blende heterostructures, Phys. Rev. B 60, 15582 (1999)

    Article  ADS  Google Scholar 

  21. J. Schliemann, J. C. Egues, D. Loss: Nonballistic spin-field-effect transistor, Phys. Rev. Lett. 90, 146801 (2003)

    Article  ADS  Google Scholar 

  22. K. Nomura, A. H. MacDonald: Quantum transport of massless dirac fermions, Phys. Rev. Lett. 98, 76602 (2007)

    Article  ADS  Google Scholar 

  23. M. Auslender, M. I. Katsnelson: Generalized kinetic equations for charge carriers in graphene, Phys. Rev. B 76, 235425 (2007)

    Article  ADS  Google Scholar 

  24. M. Trushin, J. Schliemann: Minimum electrical and thermal conductivity of graphene: a quasiclassical approach, Phys. Rev. Lett. 99, 216602 (2007)

    Article  ADS  Google Scholar 

  25. K.I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer Ultrahigh electron mobility in suspended graphene, Solid State Communications 146, 351–355 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trushin, M., Schliemann, J. (2009). Transport in 2DEGs and Graphene: Electron Spin vs. Sublattice Spin. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_11

Download citation

Publish with us

Policies and ethics