Skip to main content

Homography Based State Estimation for Aerial Robots

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5243))

Abstract

Low-cost Unmanned Aerial Vehicles have large potential for applications in the civil sector. Cheap inertial sensors alone can not provide the degree of accuracy required for control and navigation of the UAVs. Additional sensors, and sensor fusion techniques are needed to reduce the state estimation error. In the context of this work, the possibility of using visual information to augment the inertial data is investigated. The projected image of the ground plane is processed by a homography constrained optical flow description and used as a measurement update for an EKF. A simulation environment is used, which models the UAV dynamics, the rate-gyro and accelerometer errors as well as a low resolution vision system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrows, G., Neely, C.: Mixed-mode vlsi optic flow sensors for in-flight control of a micro air vehicle. In: SPIE 45th Annual Meeting (2000)

    Google Scholar 

  2. Bosse, M., Karl, W., Castanon, D., DeBitetto, P.: A vision augmented navigation system. In: Intelligent Transportation System, Boston, MA, USA, pp. 1028–1033 (1997)

    Google Scholar 

  3. Coutsiasy, E.A., Romeroz, L.: The quaternions with an application to rigid body dynamics

    Google Scholar 

  4. Cox, T.H., Nagy, C.J., Skoog, M.A., Somers, I.A.: Civil UAV capability assessment. Technical report, NASA (December 2004)

    Google Scholar 

  5. Galvin, B., McCane, B., Novins, K., Mason, D., Mills, S.: Recovering motion fields: An evaluation of eight optical flow algorithms. In: Proceedings of the British Machine Vision Conference 1998 (1998)

    Google Scholar 

  6. Gavrilets, V.: Autonomous aerobatic maneuvering of miniature helicopters. PhD thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  7. Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.-N.: Dynamic modelling and configuration stabilization for an x4-flyer. In: 15th IFAC World Congress 2002 (2002)

    Google Scholar 

  8. Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  9. Jähne, B., Haußecker, H.: Computer Vision and Applications. Academic Press, London (2000)

    MATH  Google Scholar 

  10. Low, T., Wyeth, G.: Obstacle detection using optical flow. In: Proceedings of the 2005 Australasian Conference on Robotics & Automation (2005)

    Google Scholar 

  11. Muratet, L., Doncieux, S., Briere, Y., Meyer, J.-A.: A contribution to vision-based autonomous helicopter flight in urban environments. Robotics and Autonomous Systems 50(4), 195–209 (2005)

    Article  Google Scholar 

  12. Negahdaripour, S., Horn, B.K.P.: Direct passive navigation: Analytical solution for planes. IEEE Robotics and Automation. Proceedings. 3, 1157–1163 (1986)

    Google Scholar 

  13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  14. Stocker, A.A.: Analog integrated 2-d optical flow sensor. Analog Integr. Circuits Signal Process 46(2), 121–138 (2006)

    Article  Google Scholar 

  15. van der Merwe, R., Wan, E.A., Julier, S.: Sigma-point kalman filters nonlinear estimation and sensor fusion - applications in integrated navigation. In: AIAA Guidance Navigation and Controls Conference (March 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas R. Dengel Karsten Berns Thomas M. Breuel Frank Bomarius Thomas R. Roth-Berghofer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwendner, J. (2008). Homography Based State Estimation for Aerial Robots. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds) KI 2008: Advances in Artificial Intelligence. KI 2008. Lecture Notes in Computer Science(), vol 5243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85845-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85845-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85844-7

  • Online ISBN: 978-3-540-85845-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics