Skip to main content

Fixed Point and Aperiodic Tilings

  • Conference paper
Developments in Language Theory (DLT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5257))

Included in the following conference series:

Abstract

An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals)

We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gács in the context of error-correcting computations.

The flexibility of this construction allows us to construct a “robust” aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allauzen, C., Durand, B.: Appendix A: Tiling Problems. In: Börger, E., Grädel, E., Gurevich, Y. (eds.) The Classical Decision Problems. Springer, Heidelberg (1996)

    Google Scholar 

  2. Berger, R.: The Undecidability of the Domino Problem. Mem. Amer. Math. Soc 66 (1966)

    Google Scholar 

  3. Culik, K.: An Aperiodic Set of 13 Wang Tiles. Discrete Math. 160, 245–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Durand, B., Levin, L., Shen, A.: Complex Tilings. J. Symbolic Logic 73(2), 593–613 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Durand, B., Levin, L., Shen, A.: Local Rules and Global Order, or Aperiodic Tilings. Math. Intelligencer 27(1), 64–68 (2004)

    Article  MathSciNet  Google Scholar 

  6. Durand, B., Romashchenko, A.: On Stability of Computations by Cellular Automata. In: Proc. European Conf. Compl. Syst., Paris (2005)

    Google Scholar 

  7. Gács, P.: Reliable Cellular Automata with Self-Organization. In: Proc. 38th Ann. Symp. Found. Comput. Sci., pp. 90–97 (1997)

    Google Scholar 

  8. Gács, P.: Reliable Cellular Automata with Self-Organization. J. Stat. Phys. 103(1/2), 245–267 (2001)

    Article  Google Scholar 

  9. Gray, L.: A Reader’s Guide to Gács’ Positive Rates Paper. J. Stat. Phys. 103(1/2), 1–44 (2001)

    Article  MATH  Google Scholar 

  10. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman and Company, New York (1987)

    MATH  Google Scholar 

  11. Kari, J.: A Small Aperiodic Set of Wang tiles. Discrete Math. 160, 259–264 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rogers, H.: The Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    Google Scholar 

  13. Levin, L.: Aperiodic Tilings: Breaking Translational Symmetry. Computer J. 48(6), 642–645 (2005), http://www.arxiv.org/cs.DM/0409024

    Article  Google Scholar 

  14. Mozes, S.: Tilings, Substitution Systems and Dynamical Systems Generated by Them. J. Analyse Math. 53, 139–186 (1989)

    MATH  MathSciNet  Google Scholar 

  15. von Neumann, J.: Theory of Self-reproducing Automata. Burks, A. (ed.). University of Illinois Press (1966)

    Google Scholar 

  16. Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. Inventiones Mathematicae 12, 177–209 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zaks, M., Pikovsky, A.S., Kurths, J.: On the Correlation Dimension of the Spectral Measure for the Thue–Morse Sequence. J. Stat. Phys. 88(5/6), 1387–1392 (1997)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masami Ito Masafumi Toyama

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand, B., Romashchenko, A., Shen, A. (2008). Fixed Point and Aperiodic Tilings. In: Ito, M., Toyama, M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85780-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85780-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85779-2

  • Online ISBN: 978-3-540-85780-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics