Skip to main content

Immunology and Immunotherapeutic Approaches in Multiple Myeloma

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 183))

Abstract

Immunotherapy for patients suffering from multiple myeloma is a lively and emerging field in cancer research. Immunotherapeutic approaches offer unique treatment opportunities for this, to date, mostly incurable disease. Respective basic findings and recent clinical approaches are introduced and discussed. Although several obstacles still need to be overcome, it appears that clinically efficient immunotherapies will become available for multiple myeloma patients in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Azuma T, Otsuki T, Kuzushima K, Froelich CJ, Fujita S, Yasukawa M (2004) Myeloma cells are highly sensitive to the granule exocytosis pathway mediated by WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 10(21):7402–7412

    Article  PubMed  CAS  Google Scholar 

  • Ballester OF, Fang T, Raptis A, Ballester G, Wilcox P, Hiemenz J, Tan B (2004) Adoptive immunotherapy with donor lymphocyte infusions and interleukin-2 after high-dose therapy and autologous stem cell rescue for multiple myeloma. Bone Marrow Transplant 34(5):419–423

    Article  PubMed  CAS  Google Scholar 

  • Baz R, Fanning S, Kunkel L, Gaballa S, Karam MA, Reed J, Kelly M, Hussein M (2007) Combination of rituximab and oral melphalan and prednisone in newly diagnosed multiple myeloma. Leuk Lymphoma 48(12):2338–2344

    Article  PubMed  CAS  Google Scholar 

  • Bensinger WI, Buckner CD, Anasetti C, Clift R, Storb R, Barnett T, Chauncey T, Shulman H, Appelbaum FR (1996) Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood 88(7):2787–2793

    PubMed  CAS  Google Scholar 

  • Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL (2006) In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107(10):3940–3949

    Article  PubMed  CAS  Google Scholar 

  • Borrello I, Biedrzycki B, Sheets N, George B, Racke F, Loper K, Noonan K, Donnelly A, Hege K, Levitski HI (2004) Autologous tumor combined with a GM-CSF-secreting cell line vaccine (GVAX®) following autologous stem cell transplant (ASCT) in multiple myeloma. Blood 104:Abstract no. 440

    Google Scholar 

  • Brown RD, Yuen E, Nelson M, Gibson J, Joshua D (1997) The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia 11(8):1312–1317

    Article  PubMed  CAS  Google Scholar 

  • Brown R, Murray A, Pope B, Sze DM, Gibson J, Ho PJ, Hart D, Joshua D (2004) Either interleukin-12 or interferon-gamma can correct the dendritic cell defect induced by transforming growth factor beta in patients with myeloma. Br J Haematol 125(6):743–748

    Article  PubMed  CAS  Google Scholar 

  • Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA, Franklin IM (2001) Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol 167(1):553–561

    PubMed  CAS  Google Scholar 

  • Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, Bianchi G, Podar K, Tai YT, Mitsiades C, Raje N, Jaye DL, Kumar SK, Richardson P, Munshi N, Anderson KC (2009) Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 16(4):309–323

    Article  PubMed  CAS  Google Scholar 

  • Chiriva-Internati M, Liu Y, Weidanz JA, Grizzi F, You H, Zhou W, Bumm K, Barlogie B, Mehta JL, Hermonat PL (2003) Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 102(9):3100–3107

    Article  PubMed  CAS  Google Scholar 

  • Choi C, Witzens M, Bucur M, Feuerer M, Sommerfeldt N, Trojan A, Ho A, Schirrmacher V, Goldschmidt H, Beckhove P (2005) Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood 105(5):2132–2134

    Article  PubMed  CAS  Google Scholar 

  • Cook G, Campbell JD (1999) Immune regulation in multiple myeloma: the host-tumour conflict. Blood Rev 13(3):151–162

    Article  PubMed  CAS  Google Scholar 

  • Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM (1999) Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 66(6):981–988

    PubMed  CAS  Google Scholar 

  • Corradini P, Voena C, Tarella C, Astolfi M, Ladetto M, Palumbo A, Van Lint MT, Bacigalupo A, Santoro A, Musso M, Majolino I, Boccadoro M, Pileri A (1999) Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol 17(1):208–215

    PubMed  CAS  Google Scholar 

  • Coscia M, Mariani S, Battaglio S, Di Bello C, Fiore F, Foglietta M, Pileri A, Boccadoro M, Massaia M (2004) Long-term follow-up of idiotype vaccination in human myeloma as a maintenance therapy after high-dose chemotherapy. Leukemia 18(1):139–145

    Article  PubMed  CAS  Google Scholar 

  • Crawley C, Lalancette M, Szydlo R, Gilleece M, Peggs K, Mackinnon S, Juliusson G, Ahlberg L, Nagler A, Shimoni A, Sureda A, Boiron JM, Einsele H, Chopra R, Carella A, Cavenagh J, Gratwohl A, Garban F, Zander A, Bjorkstrand B, Niederwieser D, Gahrton G, Apperley JF (2005) Outcomes for reduced-intensity allogeneic transplantation for multiple myeloma: an analysis of prognostic factors from the Chronic Leukaemia Working Party of the EBMT. Blood 105(11):4532–4539

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    Article  PubMed  CAS  Google Scholar 

  • Curti A, Tosi P, Comoli P, Terragna C, Ferri E, Cellini C, Massaia M, D’Addio A, Giudice V, Di Bello C, Cavo M, Conte R, Gugliotta G, Baccarani M, Lemoli RM (2007) Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br J Haematol 139(3):415–424

    Article  PubMed  CAS  Google Scholar 

  • Dabadghao S, Bergenbrant S, Anton D, He W, Holm G, Yi Q (1998) Anti-idiotypic T-cell activation in multiple myeloma induced by M-component fragments presented by dendritic cells. Br J Haematol 100(4):647–654

    Article  PubMed  CAS  Google Scholar 

  • Descamps G, Gomez-Bougie P, Venot C, Moreau P, Bataille R, Amiot M (2009) A humanised anti-IGF-1R monoclonal antibody (AVE1642) enhances Bortezomib-induced apoptosis in myeloma cells lacking CD45. Br J Cancer 100(2):366–369

    Article  PubMed  CAS  Google Scholar 

  • EL-Sherbiny YM, Davies FE, Cook G, Johnson RJ, Cullen MJ, Sah A, Rawstron AC, Richards SJ, Morgan GJ (2003) NK cell repertoire in myeloma and the impact of thalidomide. Blood 102:Abstract no. 1617

    Google Scholar 

  • Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, Ashcroft AJ, Owen RG, Selby PJ, Cook G (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(-)CD8(-)alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144(5):686–695

    Article  PubMed  Google Scholar 

  • Frank C, Hundemer M, Ho AD, Goldschmidt H, Witzens-Harig M (2008) Cellular immune responses against the cancer-testis antigen SPAN-XB in healthy donors and patients with multiple myeloma. Leuk Lymphoma 49(4):779–785

    Article  PubMed  CAS  Google Scholar 

  • Friedrichs B, Siegel S, Kloess M, Barsoum A, Coggin J Jr, Rohrer J, Jakob I, Tiemann M, Heidorn K, Schulte C, Kabelitz D, Steinmann J, Schmitz N, Zeis M (2008) Humoral immune responses against the immature laminin receptor protein show prognostic significance in patients with chronic lymphocytic leukemia. J Immunol 180(9):6374–6384

    PubMed  CAS  Google Scholar 

  • Frohn C, Hoppner M, Schlenke P, Kirchner H, Koritke P, Luhm J (2002) Anti-myeloma activity of natural killer lymphocytes. Br J Haematol 119(3):660–664

    Article  PubMed  CAS  Google Scholar 

  • Gale RP, Horowitz MM, Bortin MM (1989) IBMTR analysis of bone marrow transplants in acute leukaemia. Advisory Committee of the International Bone Marrow Transplant Registry (IBMTR). Bone Marrow Transplant 4(Suppl 3):83–84

    PubMed  Google Scholar 

  • Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25(18):2586–2593

    Article  PubMed  Google Scholar 

  • Garban F, Attal M, Rossi JF, Payen C, Fegueux N, Sotto JJ (2001) Immunotherapy by non-myeloablative allogeneic stem cell transplantation in multiple myeloma: results of a pilot study as salvage therapy after autologous transplantation. Leukemia 15(4):642–646

    Article  PubMed  CAS  Google Scholar 

  • Glenchur H, Zinneman HH, Hall WH (1959) A review of fifty-one cases of multiple myeloma; emphasis on pneumonia and other infections as complications. AMA Arch Intern Med 103(2):173–183

    PubMed  CAS  Google Scholar 

  • Gonzalez M, San Miguel JF, Gascon A, Moro MJ, Hernandez JM, Ortega F, Jimenez R, Guerras L, Romero M, Casanova F et al (1992) Increased expression of natural-killer-associated and activation antigens in multiple myeloma. Am J Hematol 39(2):84–89

    Article  PubMed  CAS  Google Scholar 

  • Hansson L, Abdalla AO, Moshfegh A, Choudhury A, Rabbani H, Nilsson B, Osterborg A, Mellstedt H (2007) Long-term idiotype vaccination combined with interleukin-12 (IL-12), or IL-12 and granulocyte macrophage colony-stimulating factor, in early-stage multiple myeloma patients. Clin Cancer Res 13(5):1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12(18):5423–5434

    Article  PubMed  CAS  Google Scholar 

  • Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, Rice AG, van Abbema A, Wong M, Liu G, Zhan F, Dillon M, Chen S, Rhodes S, Fuh F, Tsurushita N, Kumar S, Vexler V, Shaughnessy JD Jr, Barlogie B, van Rhee F, Hussein M, Afar DE, Williams MB (2008) CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res 14(9):2775–2784

    Article  PubMed  CAS  Google Scholar 

  • Hsu FJ, Caspar CB, Czerwinski D, Kwak LW, Liles TM, Syrengelas A, Taidi-Laskowski B, Levy R (1997) Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma–long-term results of a clinical trial. Blood 89(9):3129–3135

    PubMed  CAS  Google Scholar 

  • Hughes TP, Economou K, Mackinnon S, Vlitos M, Arthur CK, Guo AP, Rassool F, Apperley JF, Hows J, Goldman JM (1989) Slow evolution of chronic myeloid leukaemia relapsing after BMT with T-cell depleted donor marrow. Br J Haematol 73(4):462–467

    Article  PubMed  Google Scholar 

  • Hundemer M, Schmidt S, Condomines M, Lupu A, Hose D, Moos M, Cremer F, Kleist C, Terness P, Belle S, Ho AD, Goldschmidt H, Klein B, Christensen O (2006) Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma. Exp Hematol 34(4):486–496

    Article  PubMed  CAS  Google Scholar 

  • Joshua DE, Brown RD, Ho PJ, Gibson J (2008) Regulatory T cells and multiple myeloma. Clin Lymphoma Myeloma 8(5):283–286

    Article  PubMed  CAS  Google Scholar 

  • King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Hamblin TJ, Radl J, Stevenson FK (1998) DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 4(11):1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13(3):902–911

    Article  PubMed  CAS  Google Scholar 

  • Kroger N, Badbaran A, Lioznov M, Schwarz S, Zeschke S, Hildebrand Y, Ayuk F, Atanackovic D, Schilling G, Zabelina T, Bacher U, Klyuchnikov E, Shimoni A, Nagler A, Corradini P, Fehse B, Zander A (2009) Post-transplant immunotherapy with donor-lymphocyte infusion and novel agents to upgrade partial into complete and molecular remission in allografted patients with multiple myeloma. Exp Hematol 37(7):791–798

    Article  PubMed  Google Scholar 

  • Lacy MQ, Alsina M, Fonseca R, Paccagnella ML, Melvin CL, Yin D, Sharma A, Enriquez Sarano M, Pollak M, Jagannath S, Richardson P, Gualberto A (2008) Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 Receptor monoclonal antibody CP-751, 871 in patients with multiple myeloma. J Clin Oncol 26(19):3196–3203

    Article  PubMed  CAS  Google Scholar 

  • Laronne-Bar-On A, Zipori D, Haran-Ghera N (2008) Increased regulatory versus effector T cell development is associated with thymus atrophy in mouse models of multiple myeloma. J Immunol 181(5):3714–3724

    PubMed  CAS  Google Scholar 

  • Lendvai N, Gnjatic S, Ritter E, Mangone M, Austin W, Reyner K, Jayabalan D, Niesvizky R, Jagannath S, Bhardwaj N, Chen-Kiang S, Old LJ, Cho HJ (2010) Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients. Cancer Immun 10:4

    PubMed  Google Scholar 

  • Levenga H, Levison-Keating S, Schattenberg AV, Dolstra H, Schaap N, Raymakers RA (2007) Multiple myeloma patients receiving pre-emptive donor lymphocyte infusion after partial T-cell-depleted allogeneic stem cell transplantation show a long progression-free survival. Bone Marrow Transplant 40(4):355–359

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bendandi M, Deng Y, Dunbar C, Munshi N, Jagannath S, Kwak LW, Lyerly HK (2000) Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(+) T cells. Blood 96(8):2828–2833

    PubMed  CAS  Google Scholar 

  • Lim SH, Bailey-Wood R (1999) Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int J Cancer 83(2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Lim SH, Zhang Y, Wang Z, Varadarajan R, Periman P, Esler WV (2004) Rituximab administration following autologous stem cell transplantation for multiple myeloma is associated with severe IgM deficiency. Blood 103(5):1971–1972

    Article  PubMed  CAS  Google Scholar 

  • Liso A, Stockerl-Goldstein KE, Auffermann-Gretzinger S, Benike CJ, Reichardt V, van Beckhoven A, Rajapaksa R, Engleman EG, Blume KG, Levy R (2000) Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 6(6):621–627

    Article  PubMed  CAS  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS, Linehan DC (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761

    PubMed  CAS  Google Scholar 

  • Mariani S, Coscia M, Even J, Peola S, Foglietta M, Boccadoro M, Sbaiz L, Restagno G, Pileri A, Massaia M (2001) Severe and long-lasting disruption of T-cell receptor diversity in human myeloma after high-dose chemotherapy and autologous peripheral blood progenitor cell infusion. Br J Haematol 113(4):1051–1059

    Article  PubMed  CAS  Google Scholar 

  • Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y, Smith BD, Civin CI, Jones RJ (2004) Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332–2336

    Article  PubMed  CAS  Google Scholar 

  • Musto P, Carella AM Jr, Greco MM, Falcone A, Sanpaolo G, Bodenizza C, Cascavilla N, Melillo L, Carella AM (2003) Short progression-free survival in myeloma patients receiving rituximab as maintenance therapy after autologous transplantation. Br J Haematol 123(4):746–747

    Article  PubMed  Google Scholar 

  • Neelapu SS, Munshi NC, Jagannath S, Watson TM, Pennington R, Reynolds C, Barlogie B, Kwak LW (2005) Tumor antigen immunization of sibling stem cell transplant donors in multiple myeloma. Bone Marrow Transplant 36(4):315–323

    Article  PubMed  CAS  Google Scholar 

  • Osterborg A, Yi Q, Henriksson L, Fagerberg J, Bergenbrant S, Jeddi-Tehrani M, Ruden U, Lefvert AK, Holm G, Mellstedt H (1998) Idiotype immunization combined with granulocyte-macrophage colony-stimulating factor in myeloma patients induced type I, major histocompatibility complex-restricted, CD8- and CD4-specific T-cell responses. Blood 91(7):2459–2466

    PubMed  CAS  Google Scholar 

  • Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160(3):1224–1232

    PubMed  CAS  Google Scholar 

  • Peinert S, Prince HM, Guru PM, Kershaw MH, Smyth MJ, Trapani JA, Gambell P, Harrison S, Scott AM, Smyth FE, Darcy PK, Tainton K, Neeson P, Ritchie DS, Honemann D (2010) Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. Gene Ther 17(5):678–686

    Article  PubMed  CAS  Google Scholar 

  • Perez-Simon JA, Martino R, Alegre A, Tomas JF, De Leon A, Caballero D, Sureda A, Sierra J, San Miguel JF (2003) Chronic but not acute graft-versus-host disease improves outcome in multiple myeloma patients after non-myeloablative allogeneic transplantation. Br J Haematol 121(1):104–108

    Article  PubMed  Google Scholar 

  • Perri RT, Hebbel RP, Oken MM (1981) Influence of treatment and response status on infection risk in multiple myeloma. Am J Med 71(6):935–940

    Article  PubMed  CAS  Google Scholar 

  • Prabhala R, Neri P, Tassone P, Shammas MA, Bae J, Cumming VM, Allam CK, Daley JF, Desarneud F, Chauhan D, Blanchard E, Anderson K, Munshi NC, (2004) Dysregulated CD4+ CD25+ T-regulatory cells and TLRs in myeloma. Blood 104:Abstract no. 2466

    Google Scholar 

  • Prabhala RH, Neri P, Bae JE, Tassone P, Shammas MA, Allam CK, Daley JF, Chauhan D, Blanchard E, Thatte HS, Anderson KC, Munshi NC (2006) Dysfunctional T regulatory cells in multiple myeloma. Blood 107(1):301–304

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Xie J, Hong S, Yang J, Zhang L, Han X, Wang M, Zhan F, Shaughnessy JD Jr, Epstein J, Kwak LW, Yi Q (2007) Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma. Blood 110(5):1587–1594

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Hong S, Wang S, Zhang L, Sun L, Wang M, Yang J, Kwak LW, Hou J, Yi Q (2009) Myeloma cell line-derived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma. Blood 114(18):3880–3889

    Article  PubMed  CAS  Google Scholar 

  • Qing J, Du X, Chen Y, Chan P, Li H, Wu P, Marsters S, Stawicki S, Tien J, Totpal K, Ross S, Stinson S, Dornan D, French D, Wang QR, Stephan JP, Wu Y, Wiesmann C, Ashkenazi A (2009) Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest 119(5):1216–1229

    Article  PubMed  CAS  Google Scholar 

  • Raitakari M, Brown RD, Gibson J, Joshua DE (2003) T cells in myeloma. Hematol Oncol 21(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Hansson L, Osterborg A, Johnsen HE, Mellstedt H (2003) Idiotype vaccination in multiple myeloma induced a reduction of circulating clonal tumor B cells. Blood 101(11):4607–4610

    Article  PubMed  CAS  Google Scholar 

  • Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma–a feasibility study. Blood 93(7):2411–2419

    PubMed  CAS  Google Scholar 

  • Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P (2003) Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 88(10):1139–1149

    PubMed  Google Scholar 

  • Rew SB, Lopes L, Koishihara Y, Kosaka M, Ozaki S, Peggs K, Chain B, Yong KL (2009) Potent anti-tumour cytotoxic T lymphocytes directed against the myeloma antigen HM1.24. Blood 102:Abstract no. 380

    Google Scholar 

  • Rice A, Hart D (2002) Technology evaluation: APC-80200, Dendreon. Curr Opin Mol Ther 4(5):523–527

    PubMed  CAS  Google Scholar 

  • Ridgway D (2003) The first 1000 dendritic cell vaccines. Cancer Invest 21(6):873–886

    Article  PubMed  Google Scholar 

  • Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102(51):18538–18543

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F, Yu Y, Gotz M, Heyduk M, Ritter G, Speiser DE, Gnjatic S, Guillaume P, Ringhoffer M, Schlenk RF, Liebisch P, Bunjes D, Shiku H, Dohner H, Greiner J (2008) RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111(3):1357–1365

    Article  PubMed  CAS  Google Scholar 

  • Schuster SJ, Neelapu SS, Gause BL (2009) Idiotype vaccine therapy (BiovaxID) in follicular lymphoma in first complete remission: phase III clinical trial results. J Clin Oncol 27:18s

    Article  Google Scholar 

  • Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2(6):389–400

    PubMed  CAS  Google Scholar 

  • Shi J, Tricot G, Szmania S, Rosen N, Garg TK, Malaviarachchi PA, Moreno A, Dupont B, Hsu KC, Baxter-Lowe LA, Cottler-Fox M, Shaughnessy JD Jr, Barlogie B, van Rhee F (2008) Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 143(5):641–653

    Article  PubMed  Google Scholar 

  • Siegel S, Friedrichs B, Budde AK, Barsoum A, Coggin J Jr, Tiemann M, Kabelitz D, Zeis M (2008) In-vivo detectable antibodies directed against the oncofetal antigen/immature laminin receptor can recognize and control myeloma cells–clinical implications. Leukemia 22(11):2115–2118

    Article  PubMed  CAS  Google Scholar 

  • Singhal S, Safdar A, Chiang KY, Godder K, van Rhee F, Garner F, Foster B, Dubovsky D, Henslee-Downey PJ, Mehta J (2000) Non-myeloablative allogeneic transplantation (‘microallograft’) for refractory myeloma after two preceding autografts: feasibility and efficacy in a patient with active aspergillosis. Bone Marrow Transplant 26(11):1231–1233

    Article  PubMed  CAS  Google Scholar 

  • Spanoudakis E, Hu M, Naresh K, Terpos E, Melo V, Reid A, Kotsianidis I, Abdalla S, Rahemtulla A, Karadimitris A (2009) Regulation of multiple myeloma survival and progression by CD1d. Blood 113(11):2498–2507

    Article  PubMed  CAS  Google Scholar 

  • Stein R, Smith MR, Chen S, Zalath M, Goldenberg DM (2009) Combining milatuzumab with bortezomib, doxorubicin, or dexamethasone improves responses in multiple myeloma cell lines. Clin Cancer Res 15(8):2808–2817

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Roddick JS, King AT, McNicholl F, Savelyeva N, Rice J (2004) DNA vaccines to attack cancer. Proc Natl Acad Sci USA 101(Suppl 2):14646–14652

    Article  PubMed  CAS  Google Scholar 

  • Stritzke J, Zunkel T, Steinmann J, Schmitz N, Uharek L, Zeis M (2003) Therapeutic effects of idiotype vaccination can be enhanced by the combination of granulocyte-macrophage colony-stimulating factor and interleukin 2 in a myeloma model. Br J Haematol 120(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Suri-Payer E, Fritzsching B (2006) Regulatory T cells in experimental autoimmune disease. Springer Semin Immunopathol 28(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Tai YT, Dillon M, Song W, Leiba M, Li XF, Burger P, Lee AI, Podar K, Hideshima T, Rice AG, van Abbema A, Jesaitis L, Caras I, Law D, Weller E, Xie W, Richardson P, Munshi NC, Mathiot C, Avet-Loiseau H, Afar DE, Anderson KC (2008) Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112(4):1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Tarte K, Lu ZY, Fiol G, Legouffe E, Rossi JF, Klein B (1997) Generation of virtually pure and potentially proliferating dendritic cells from non-CD34 apheresis cells from patients with multiple myeloma. Blood 90(9):3482–3495

    PubMed  CAS  Google Scholar 

  • Titzer S, Christensen O, Manzke O, Tesch H, Wolf J, Emmerich B, Carsten C, Diehl V, Bohlen H (2000) Vaccination of multiple myeloma patients with idiotype-pulsed dendritic cells: immunological and clinical aspects. Br J Haematol 108(4):805–816

    Article  PubMed  CAS  Google Scholar 

  • Treon SP, Agus TB, Link B, Rodrigues G, Molina A, Lacy MQ, Fisher DC, Emmanouilides C, Richards AI, Clark B, Lucas MS, Schlossman R, Schenkein D, Lin B, Kimby E, Anderson KC, Byrd JC (2001) CD20-directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom‘s macroglobulinemia. J Immunother 24(3):272–279

    Article  CAS  Google Scholar 

  • Tripodo C, Florena AM, Macor P, Di Bernardo A, Porcasi R, Guarnotta C, Ingrao S, Zerilli M, Secco E, Todaro M, Tedesco F, Franco V (2009) P-selectin glycoprotein ligand-1 as a potential target for humoral immunotherapy of multiple myeloma. Curr Cancer Drug Targets 9(5):617–625

    Article  PubMed  CAS  Google Scholar 

  • van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P, Batchu RB, Moreno A, Spagnoli G, Shaughnessy J, Tricot G (2005) NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 105(10):3939–3944

    Article  PubMed  Google Scholar 

  • Verdonck LF, Petersen EJ, Lokhorst HM, Nieuwenhuis HK, Dekker AW, Tilanus MG, de Weger RA (1998) Donor leukocyte infusions for recurrent hematologic malignancies after allogeneic bone marrow transplantation: impact of infused and residual donor T cells. Bone Marrow Transplant 22(11):1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Hong S, Yang J, Qian J, Zhang X, Shpall E, Kwak LW, Yi Q (2006) Optimizing immunotherapy in multiple myeloma: restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 108(13):4071–4077

    Article  PubMed  CAS  Google Scholar 

  • Wen YJ, Barlogie B, Yi Q (2001) Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood 97(6):1750–1755

    Article  PubMed  CAS  Google Scholar 

  • Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349(5):427–434

    Article  PubMed  CAS  Google Scholar 

  • Yi Q, Osterborg A, Bergenbrant S, Mellstedt H, Holm G, Lefvert AK (1995) Idiotype-reactive T-cell subsets and tumor load in monoclonal gammopathies. Blood 86(8):3043–3049

    PubMed  CAS  Google Scholar 

  • Yi Q, Freeman ME, Szmania S, Rosen N, Cottler-Fox M, Barlogie B, Tricot G, Van Rhee F (2003) Intranodal vaccination with idiotype-pulsed dendritic cells induces potent and long-lasting cellular and humoral immune responses in myeloma patients. Blood 102:Abstract no. 5277

    Google Scholar 

  • Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201(5):779–791

    Article  PubMed  CAS  Google Scholar 

  • Zeis M, Frenzke H, Uharek L, Glass B, Schmitz N, Kronke M, Steinmann J (1998) Dendritic cells pulsed with idiotypic determinants induce anti-tumour immunity against established multiple myeloma. Blood 92:4229

    Google Scholar 

  • Zheng C, Ostad M, Andersson M, Celsing F, Holm G, Sundblad A (2002) Natural cytotoxicity to autologous antigen-pulsed dendritic cells in multiple myeloma. Br J Haematol 118(3):778–785

    Article  PubMed  Google Scholar 

  • Zinneman HH, Hall WH (1954) Recurrent pneumonia in multiple myeloma and some observations on immunologic response. Ann Intern Med 41(6):1152–1163

    PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Beckhove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schlude, C., Beckhove, P. (2011). Immunology and Immunotherapeutic Approaches in Multiple Myeloma. In: Moehler, T., Goldschmidt, H. (eds) Multiple Myeloma. Recent Results in Cancer Research, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85772-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85772-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85771-6

  • Online ISBN: 978-3-540-85772-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics