Advertisement

Using Expressive Dialogues and Gradient Information to Improve Trade-Offs in Bilateral Negotiations

  • Ivan Marsa-Maestre
  • Miguel A. Lopez-Carmona
  • Juan R. Velasco
  • Bernardo Alarcos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5183)

Abstract

A bilateral negotiation may be seen as an interaction between two parties with the goal of reaching an agreement over a given range of issues which usually involves solving a conflict of interests between the parties involved. In our previous work, we address the problem of automatic bilateral negotiation by using fuzzy constraints as a mean to express participant’s preferences, focusing in purchase negotiation scenarios. Other research works have used similarity criteria to perform trade-offs in bilateral bargaining scenarios, without any expressive mechanisms between participants. In this paper, we combine our expressive approach with the traditional positional bargaining schema. In particular, we explore the possibility of using the derivatives of each agent’s valuation function to issue direction requests to narrow the solution search space of its counterpart, thus improving the effectiveness and efficiency of the negotiation over traditional positional approaches.

Keywords

Negotiation Process Dialogue Game Bilateral Negotiation Utility Increase Automate Negotiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenschein, J.S., Zlotkin, G.: Rules of Encounter. MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robotics and Autonomous Systems 24(3-4), 159–182 (1998)CrossRefGoogle Scholar
  3. 3.
    Raiffa, H.: Lectures on negotiation analysis. PON Books, Harvard Law School (1996)Google Scholar
  4. 4.
    Raiffa, H.: The Art and Science of Negotiation. Harvard University Press (1982)Google Scholar
  5. 5.
    Faratin, P., Sierra, C., Jennings, N.: Using similarity criteria to make negotiation trade-offs. In: Proceedings of the 4th International Conference on Multi-Agent Systems, pp. 119–126 (2000)Google Scholar
  6. 6.
    Lopez-Carmona, M.A., Velasco, J.R.: A fuzzy constraint based model for automated purchase negotiations. In: Fasli, M., Shehory, O. (eds.) TADA/AMEC 2006. LNCS (LNAI), vol. 4452, pp. 234–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Lopez-Carmona, M.A., Velasco, J.R., Marsa-Maestre, I.: The agents’ attitudes in fuzzy constraint based automated purchase negotiations. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 246–255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artificial Intelligence 142(2), 205–237 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ros, R., Sierra, C.: A negotiation meta strategy combining trade-offs and concession moves. Autonomous Agents and Multi-Agent Systems 12(2), 163–181 (2006)CrossRefGoogle Scholar
  10. 10.
    Ehtamo, H., Ketteunen, E., Hamalainen, R.P.: Searching for joint gains in multi-party negotiations. European Journal of Operational Research 1(30), 54–69 (2001)CrossRefGoogle Scholar
  11. 11.
    Kersten, G.E., Noronha, S.J.: Rational agents, contract curves, and inefficient compromises. IEEE Transactions on Systems, Man and Cybernetics, Part A Systems and Humans 28(3), 326–338 (1998)CrossRefGoogle Scholar
  12. 12.
    Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Protocols for negotiating complex contracts. IEEE Intelligent Systems 18(6), 32–38 (2003)CrossRefGoogle Scholar
  13. 13.
    Vo, Q.B., Padgham, L., Cavedon, L.: Negotiating flexible agreements by combining distributive and integrative negotiation. Intelligent Decision Technologies 1(1-2), 33–47 (2007)Google Scholar
  14. 14.
    Ehtamo, H., Hamalainen, R.P., Heiskanen, P., Teich, J., Verkama, M., Zionts, S.: Generating pareto solutions in a two-party setting: constraint proposal methods. Management Science 45(12), 1697–1709 (1999)CrossRefGoogle Scholar
  15. 15.
    Ito, T., Hattori, H., Klein, M.: Multi-issue negotiation protocol for agents: Exploring nonlinear utility spaces. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 1347–1352 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ivan Marsa-Maestre
    • 1
  • Miguel A. Lopez-Carmona
    • 1
  • Juan R. Velasco
    • 1
  • Bernardo Alarcos
    • 1
  1. 1.Departamento de AutomaticaUniversidad de AlcalaAlcala de HenaresSpain

Personalised recommendations