Skip to main content

Numerical Evaluation of Effective Material Properties of Piezoelectric Fibre Composites

  • Chapter

Abstract

This paper presents a method for the evaluation of effective material properties of piezoelectric fibre composites using homogenisation techniques based on the finite element method (FEM) with representative volume element (RVE) method. Numerical studies are performed to estimate the influence of diameter and arrangement of fibres on effective material properties. All effective material properties of transversely randomly distributed uni-directional piezoelectric fibre composites are evaluated and comparisons are made with regular packing like square and hexagonal arrangements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhvalov, N., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media - Mathematical Problems in the Mechanics of Composite Materials. Kluwer, Dordrecht (1989)

    Google Scholar 

  2. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  3. Benveniste, Y.: The determination of elastic and electric fields in a piezoelectric inhomogeneity. J. Appl. Phys 72(3), 1086–1095 (1992)

    Article  Google Scholar 

  4. Benveniste, Y.: Universal relations in piezoelectric composites with eigenstress and polarization fields. Part I: Binary media –local fields and effective behavior. J. Appl. Mech. 60(2), 265–269 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart-Diaz, R., Otero, J.A., Bravo-Castillero, J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fibre composites. Int. J. Sol. Struct. 42, 5692–5714 (2005)

    Article  MATH  Google Scholar 

  6. Bisegna, P., Luciano, R.: Variational bounds for the overall properties of piezoelectric composites. J. Mech. Phys. Solids 44(4), 583–602 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bisegna, P., Luciano, R.: On methods for bounding the overall properties of periodic piezoelectric fibrous composites. J. Mech. Phys. Solids 45(8), 1329–1356 (1997)

    Article  MathSciNet  Google Scholar 

  8. Böhm, H.J.: Numerical investigation of microplasticity effects in unidirectional long fibre reinforced metal matrix composites. Modell. Simul. Mater. Sci. Engng. 1(5), 649–671 (1993)

    Article  Google Scholar 

  9. Brockenbrough, J.R., Suresh, S.: Plastic deformation of continuous fibre-reinforced metal-matrix composites: effects of fibre shape and distribution. Scr. Metall. Mater. 24, 325–330 (1990)

    Article  Google Scholar 

  10. Chan, H.L., Unsworth, J.: Simple model for piezoelectric polymere 1-3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectrics Frequency Control 36(4), 434–441 (1989)

    Article  Google Scholar 

  11. Chen, T.: Piezoelectric properties of multiphase fibrous composites: some theoretical results. J. Mech. Phys. Sol. 41(11), 1781–1794 (1993)

    Article  MATH  Google Scholar 

  12. Cleveringa, H.H.M., van der Giessen, E., Needleman, A.: Comparison of discrete dislocations and continuum plasticity predictions for a composite material. Acta Metall. Mater. 45(8), 3163–3179 (1997)

    Google Scholar 

  13. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Sol. Struct. 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  14. Dunn, M.L., Wienecke, H.A.: Inclusions and inhomogeneities in transversely isotropic piezoelectric solids. Int. J. Sol. Struct. 34(27), 3571–3582 (1997)

    Article  MATH  Google Scholar 

  15. Gaudenzi, P.: On the electromechanical response of active composite materials with piezoelectric inclusions. Comput. Struct. 65(2), 157–168 (1997)

    Article  MATH  Google Scholar 

  16. Gunawardena, S.R., Jansson, S., Leckie, A.: Modeling of anisotropic behavior of weakly bonded fibre reinforced MMC’s. Acta Metall. Mater 41(11), 3147–3156 (1993)

    Article  Google Scholar 

  17. Levin, V.M., Rakovskaja, M.I., Kreher, W.S.: The effective thermoelectroelastic properties of microinhomogeneous materials. Int. J. Solids Struct. 36, 2683–2705 (1999)

    Article  MATH  Google Scholar 

  18. Schulgasser, K.: Relationships between the effective properties of transversely isotropic piezoelectric composites. J. Mech. Phys. Solids 40, 473–479 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Silva, E.C.N., Fonseca, J.S.O., Kikuchi, N.: Optimal design of periodic piezocomposites. Comput. Methods Appl. Engng. 159, 49–77 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Smith, W.A., Auld, B.A.: Modeling 1-3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectrics Frequency Control 38, 40–47 (1991)

    Article  Google Scholar 

  21. Suquet, P.: Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (eds.) Homogenization Techniques for Composite Media, pp. 194–275. Springer, Berlin (1987)

    Google Scholar 

  22. Wang, B.: Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Sol. Struct. 29, 293–308 (1992)

    Article  MATH  Google Scholar 

  23. Wang, J.S.: Random sequential adsorption, series expansion and monte carlo simulation. Physics A 254, 179–184 (1998)

    Article  Google Scholar 

  24. Xia, Z., Zhang, Y., Ellyin, F.: A Unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Sol. Struct. 40, 1907–1921 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kari, S., Berger, H., Gabbert, U. (2008). Numerical Evaluation of Effective Material Properties of Piezoelectric Fibre Composites. In: Bertram, A., Tomas, J. (eds) Micro-Macro-interaction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85715-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85715-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85714-3

  • Online ISBN: 978-3-540-85715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics