Skip to main content

Population Balance Modelling for Agglomeration and Disintegration of Nanoparticles

  • Chapter
Micro-Macro-interaction

Abstract

To control the particle size and morphology of nanoparticles is of crucial importance from a fundamental and an industrial point of view. Nanoparticle precipitation in the batch reactor is investigated experimentally as well as by simulations based on population balance equations combined with the model using titanium dioxide as the material under investigation. The superposition of the population balance models for agglomeration and disintegration with the different kernels leads to a system of partial differential equations, which can be numerically solved by various methods. This includes a comparison of the derived particle size distributions, moments and their accuracy depending on the initial particle size distribution. Furthermore, the capability of the precipitation model is evaluated, achieving good agreement of the particle sizes between experimental and simulation results. Finally, the computational effort of both methods in comparison to the prior mentioned parameters is evaluated in terms of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gratzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995)

    Article  Google Scholar 

  2. Granqvist, G.: Handbook of Inorganic Electrochromic Materials. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  3. Janata, J., Josowicz, M., Vanysek, P., DeVaney, D.M.: Chemical Sensors. Anal. Chem. 70(12), 179R (1998)

    Article  Google Scholar 

  4. Kupriyanov, L.Y. (ed.): Semiconductor Sensors in Physico-Chemical Studies: Handbook of Sensors and Actuators 4. Elsevier, Amsterdam (1996)

    Google Scholar 

  5. Kress-Rogers, E. (ed.): Handbook of Biosensors and Electronic Noses. CRC, Boca Raton (1997)

    Google Scholar 

  6. Manthiram, A., Kim, J.: Nanosized manganese oxide as cathode material for lithium batteries: Influence of carbon mixing and grinding on cyclability. Journal of power sources 146, 294–299 (2005)

    Article  Google Scholar 

  7. Sarangapani, S., Tilak, B.V., Chen, C.P.: Materials for Electrochemical Capacitors. Journal of Electrochem. Soc. 143(11), 3791 (1996)

    Article  Google Scholar 

  8. Vayssieres, L., Hagfeldt, A., Lindquist, S.E.: Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials. Pure. Appl. Chem. 72(1), 47–52 (2000)

    Article  Google Scholar 

  9. Schwarzer, H.C., Peukert, W.: Prediction of aggregation kinetics based on surface properties of nanoparticles. Chemical Engineering Science 60, 11–25 (2005)

    Article  Google Scholar 

  10. Schuetz, S., Piesche, M.: A model of the coagulation process with solid particles and flocs in turbulent flow. Chemical Engineering Science 57, 4357–4368 (2002)

    Article  Google Scholar 

  11. Schwarzer, H.C., Peukert, W.: Experimental investigation into the influence of mixing on nanoparticle precipitation. Chemical Engineering Technology 25(6), 657–661 (2002)

    Article  Google Scholar 

  12. Schwarzer, H.C., Peukert, W.: Tailoring particle size through nanoparticle precipitation. Chemical Engineering Communication 191(4), 580–606 (2004)

    Article  Google Scholar 

  13. Gregory, M., Odegard, S., Thomas, G., Lee, M., Nicholsonc, K., Wise, E.: Composites Science and Technology 62, 1869–1880 (2002)

    Google Scholar 

  14. Hintz, W., Nikolov, T., Jordanova, V., Tomas, J.: Preparation of titanium dioxide nanoparticles and their characterization. Nanoscience & nanotechnology - nanostructured materials, application and innovation transfer (Sofia) 3, 73–76 (2003)

    Google Scholar 

  15. Nikolov, T., Hintz, W., Jordanova, V., Tomas, J.: Synthesis and characterisation of titanium dioxide nanoparticles. Journal of the University of Chemical Technology and Metallurgy (Sofia) 38(3), 725–734 (2003)

    Google Scholar 

  16. McCoy, J.B.: A population balance framework for nucleation, growth, and aggregation. Chemical Engineering Science 57, 2279–2285 (2002)

    Article  Google Scholar 

  17. Peukert, W., Schwarzer, H.C., Stenger, F.: Control of aggregation in production and handling of nanoparticles. Chemical Engineering and Processing 44, 245–252 (2005)

    Article  Google Scholar 

  18. Ramkrishna, D.: Population balances. Theory and applications to particulate systems in engineering, 1st edn. Academic Press, New York (2000)

    Google Scholar 

  19. Kumar, J.: Numerical approximations of population balance equations in particulate systems, Ph.D. Thesis. Otto-von-Guericke-University Magdeburg, Germany (2006)

    Google Scholar 

  20. Sommer, M., Stenger, F., Peukert, W., Wagner, N.J.: Agglomeration and breakage of nanoparticles in stirred media mills a comparison of different methods and models. Chemical Engineering Science 61, 135–148 (2006)

    Article  Google Scholar 

  21. Smoluchowski, M.V.: Versuch einer mathematischen theorie der koagulationskinetic kolloider losunggen. Z. Phys. Chem. 92, 129 (1917)

    Google Scholar 

  22. Thompson, P.D.: Proceedings International Conference Cloud Physics, Toronto, p. 115 (1968)

    Google Scholar 

  23. Fuchs, N.: Über die Stabilität und Aufladung der Aerosole. Z. Phys. 89, 736 (1934)

    Article  Google Scholar 

  24. Melis, S., Verduyn, M., Storti, G., Morbidelli, M., Baldyga, J.: Effect of fluid motion on the aggregation of small particles subject to interaction forces. AIChE J. 45, 1383 (1999)

    Article  Google Scholar 

  25. Kumar, S., Ramkrishna, D.: On the solution of population balance equations by discretization – I. A fixed pivot technique. Chemical Engineering Science 51, 1311–1332 (1996)

    Article  Google Scholar 

  26. Seifert, A., Beheng, K.D.: A double-moment parameterization for simulating autoconversion, accreation and selfcollection. Atmospheric Research 59(60), 265–281 (2001)

    Article  Google Scholar 

  27. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., Mörl, L.: Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chemical Engineering Science 61, 282–292 (2006)

    Article  Google Scholar 

  28. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.: An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technology 182, 81–104 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gokhale, Y.P., Kumar, J., Hintz, W., Warnecke, G., Tomas, J. (2008). Population Balance Modelling for Agglomeration and Disintegration of Nanoparticles. In: Bertram, A., Tomas, J. (eds) Micro-Macro-interaction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85715-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85715-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85714-3

  • Online ISBN: 978-3-540-85715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics