Skip to main content

Cyclin-dependent kinase

  • Chapter
Book cover Springer Handbook of Enzymes

Part of the book series: Springer Handbook of Enzymes ((HDBKENZYMES,volume S4))

  • 922 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacKintosh, C.; MacKintosh, R.W.: Inhibitors of protein kinases and phosphatases. Trends Biochem. Sci., 19 444–448 (1994)

    PubMed  CAS  Google Scholar 

  2. Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; et al.: The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195 (2000)

    PubMed  Google Scholar 

  3. Gilardi-Hebenstreit, P.; Nieto, M.A.; Frain, M.; Mattei, M.G.; Chestier, A.; Wilkinson, D.G.; Charnay, P.: An Eph-related receptor protein tyrosine kinase gene segmentally expressed in the developing mouse hindbrain. Oncogene, 7, 2499–2506 (1992)

    PubMed  CAS  Google Scholar 

  4. Hunter, T.: Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell, 80, 225–236 (1995)

    PubMed  CAS  Google Scholar 

  5. Kemp, B.E.; Parker, M.W.; Hu, S.; Tiganis, T.; House, C.: Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends Biochem. Sci., 19, 440–444 (1994)

    PubMed  CAS  Google Scholar 

  6. Johnson, L.N.; Noble, M.E.M.; Owen, D.J.: Active and inactive protein kinases: structural basis for regulation. Cell, 85, 149–158 (1996)

    PubMed  CAS  Google Scholar 

  7. Adams Joseph, A.: Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model?. Biochemistry, 42, 601–607 (2003)

    PubMed  CAS  Google Scholar 

  8. Adams, J.A.: Kinetic and catalytic mechanisms of protein kinases. Chem. Rev., 101, 2271–2290 (2001)

    PubMed  CAS  Google Scholar 

  9. Wood, V.; Gwilliam, R.; Rajandream, M.A.; Lyne, M.; Lyne, R.; et al.: The genome sequence of Schizosaccharomyces pombe. Nature, 415, 871–880 (2002)

    PubMed  CAS  Google Scholar 

  10. Hanks, S.K.: Homology probing: identification of cDNA clones encoding members of the protein-serine kinase family. Proc. Natl. Acad. Sci. USA, 84, 388–392 (1987)

    PubMed  CAS  Google Scholar 

  11. Wilson, R.; Ainscough, R.; Anderson, K.; Baynes, C.; Berks, M.; Bonfield, J.; Burton, J.; Connell, M.; Copsey, T.; Cooper, J.; et al.: 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature, 368, 32–38 (1994)

    PubMed  CAS  Google Scholar 

  12. Saiz, J.E.; Buitrago, M.J.; Garcia, R.; Revuelta, J.L.; Del Rey, F.: The sequence of a 20.3 kb DNA fragment from the left arm of Saccharomyces cerevisiae chromosome IV contains the KIN28, MSS2, PHO2, POL3 and DUN1 genes, and six new open reading frames. Yeast, 12, 1077–1084 (1996)

    PubMed  CAS  Google Scholar 

  13. Biggs, W.H.; Zipursky, S.L.: Primary structure, expression, and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase. Proc. Natl. Acad. Sci. USA, 89, 6295–6299 (1992)

    PubMed  CAS  Google Scholar 

  14. Irie, K.; Nomoto, S.; Miyajima, I.; Matsumoto, K.: SGV1 encodes a CDC28/cdc2-related kinase required for a G α subunit-mediated adaptive response to pheromone in S. cerevisiae. Cell, 65, 785–795 (1991)

    PubMed  CAS  Google Scholar 

  15. Montini, E.; Andolfi, G.; Caruso, A.; Buchner, G.; Walpole, S.M.; Mariani, M.; Consalez, G.; Trump, D.; Ballabio, A.; Franco, B.: Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics, 51, 427–433 (1998)

    PubMed  CAS  Google Scholar 

  16. Roemer, T.; Fortin, N.; Bussey, H.: DNA sequence analysis of a 10.4 kbp region on the right arm of yeast chromosome XVI positions GPH1 and SGV1 adjacent to KRE6, and identifies two novel tRNA genes. Yeast, 10, 1527–1530 (1994)

    PubMed  CAS  Google Scholar 

  17. Sauer, K.; Weigmann, K.; Sigrist, S.; Lehner, C.F.: Novel members of the cdc2-related kinase family in Drosophila: cdk4/6, cdk5, PFTAIRE, and PITSLRE kinase. Mol. Biol. Cell, 7, 1759–1769 (1996)

    PubMed  CAS  Google Scholar 

  18. Tanaka, K.; Okayama, H.: A pcl-like cyclin activates the Res2p-Cdc10p cell cycle “start” transcriptional factor complex in fission yeast. Mol. Biol. Cell, 11, 2845–2862 (2000)

    PubMed  CAS  Google Scholar 

  19. Watson, P.; Davey, J.: Characterization of the Prk1 protein kinase from Schizosaccharomyces pombe. Yeast, 14, 485–492 (1998)

    PubMed  CAS  Google Scholar 

  20. Hirose, T.; Tamaru, T.; Okumura, N.; Nagai, K.; Okada, M.: PCTAIRE 2, a Cdc2-related serine/threonine kinase, is predominantly expressed in terminally differentiated neurons. Eur. J. Biochem., 249, 481–488 (1997)

    PubMed  CAS  Google Scholar 

  21. Ellenrieder, C.; Bartosch, B.; Lee, G.Y.; Murphy, M.; Sweeney, C.; Hergersberg, M.; Carrington, M.; Jaussi, R.; Hunt, T.: The long form of CDK2 arises via alternative splicing and forms an active protein kinase with cyclins A and E. DNA Cell Biol., 20, 413–423 (2001)

    PubMed  CAS  Google Scholar 

  22. Baur, S.; Becker, J.; Li, Z.; Niegemann, E.; Wehner, E.; Wolter, R.; Brendel, M.: Sequence analysis of a 5.6 kb fragment of chromosome II from Saccharomyces cerevisiae reveals two new open reading frames next to CDC28. Yeast, 11, 455–458 (1995)

    PubMed  CAS  Google Scholar 

  23. Lorincz, A.T.; Reed, S.I.: Primary structure homology between the product of yeast cell division control gene CDC28 and vertebrate oncogenes. Nature, 307, 183–185 (1984)

    PubMed  CAS  Google Scholar 

  24. MacCoss, M.J.; McDonald, W.H.; Saraf, A.; Sadygov, R.; Clark, J.M.; Tasto, J.J.; Gould, K.L.; Wolters, D.; Washburn, M.; Weiss, A.; Clark, J.I.; Yates, J.R.: Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl. Acad. Sci. USA, 99, 7900–7905 (2002)

    PubMed  CAS  Google Scholar 

  25. Machida, M.; Yamazaki, S.; Kunihiro, S.; Tanaka, T.; Kushida, N.; Jinnno, K.; Haikawa, Y.; Yamazaki, J.; Yamamoto, S.; Sekine, M.; Oguchi, A.; Nagai, Y.; Sakai, M.; Aoki, K.; Ogura, K.; Kudoh, Y.; Kikuchi, H.; Zhang, M.Q.; Yanagida, M.: A 38 kb segment containing the cdc2 gene from the left arm of fission yeast chromosome II: sequence analysis and characterization of the genomic DNA and cDNAs encoded on the segment. Yeast, 16, 71–80 (2000)

    PubMed  CAS  Google Scholar 

  26. MacNeill, S.A.; Nurse, P.: Mutational analysis of the fission yeast p34cdc2 protein kinase gene. Mol. Gen. Genet., 236, 415–426 (1993)

    PubMed  CAS  Google Scholar 

  27. Gould, K.L.; Nurse, P.: Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature, 342, 39–45 (1989)

    PubMed  CAS  Google Scholar 

  28. Brizuela, L.; Draetta, G.; Beach, D.: p13suc1 acts in the fission yeast cell division cycle as a component of the p34cdc2 protein kinase. EMBO J., 6, 3507–3514 (1987)

    PubMed  CAS  Google Scholar 

  29. Hindley, J.; Phear, G.A.: Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe; patterns of splicing and homology to protein kinases. Gene, 31, 129–134 (1984)

    PubMed  CAS  Google Scholar 

  30. Korsisaari, N.; Makela, T.P.: Interactions of Cdk7 and Kin28 with Hint/PKCI-1 and Hnt1 histidine triad proteins. J. Biol. Chem., 275, 34837–34840 (2000)

    PubMed  CAS  Google Scholar 

  31. Valay, J.G.; Simon, M.; Faye, G.: The kin28 protein kinase is associated with a cyclin in Saccharomyces cerevisiae. J. Mol. Biol., 234, 307–310 (1993)

    PubMed  CAS  Google Scholar 

  32. Simon, M.; Seraphin, B.; Faye, G.: KIN28, a yeast split gene coding for a putative protein kinase homologous to CDC28. EMBO J., 5, 2697–2701 (1986)

    PubMed  CAS  Google Scholar 

  33. Ohta, T.; Okamoto, K.; Isohashi, F.; Shibata, K.; Fukuda, M.; Yamaguchi, S.; Xiong, Y.: T-loop deletion of CDC2 from breast cancer tissues eliminates binding to cyclin B1 and cyclin-dependent kinase inhibitor p21. Cancer Res., 58, 1095–1098 (1998)

    PubMed  CAS  Google Scholar 

  34. Draetta, G.; Beach, D.: Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell, 54, 17–26 (1988)

    PubMed  CAS  Google Scholar 

  35. Lee, M.G.; Nurse, P.: Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature, 327, 31–35 (1987)

    PubMed  CAS  Google Scholar 

  36. Th’ng, J.P.; Wright, P.S.; Hamaguchi, J.; Lee, M.G.; Norbury, C.J.; Nurse, P.; Bradbury, E.M.: The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell, 63, 313–324 (1990)

    CAS  Google Scholar 

  37. Spurr, N.K.; Gouph, A.C.; Lee, M.G.: Cloning of the mouse homologue of the yeast cell cycle control gene cdc2. DNA Seq., 1, 49–54 (1990)

    PubMed  CAS  Google Scholar 

  38. Cisek, L.J.; Corden, J.L.: Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature, 339, 679–684 (1989)

    PubMed  CAS  Google Scholar 

  39. Soufir, N.; Avril, M.F.; Chompret, A.; Demenais, F.; Bombled, J.; Spatz, A.; Stoppa-Lyonnet, D.; Benard, J.; Bressac-de Paillerets, B.: Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum. Mol. Genet., 7, 209–216 (1998)

    PubMed  CAS  Google Scholar 

  40. Elkahloun, A.G.; Krizman, D.B.; Wang, Z.; Hofmann, T.A.; Roe, B.; Meltzer, P.S.: Transcript mapping in a 46-kb sequenced region at the core of 12q13.3 amplification in human cancers. Genomics, 42, 295–301 (1997)

    PubMed  CAS  Google Scholar 

  41. Zuo, L.; Weger, J.; Yang, Q.; Goldstein, A.M.; Tucker, M.A.; Walker, G.J.; Hayward, N.; Dracopoli, N.C.: Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat. Genet., 12, 97–99 (1996)

    PubMed  CAS  Google Scholar 

  42. Wolfel, T.; Hauer, M.; Schneider, J.; Serrano, M.; Wolfel, C.; Klehmann-Hieb, E.; De Plaen, E.; Hankeln, T.; Meyer zum Buschenfelde, K.H.; Beach, D.: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science, 269, 1281–1284 (1995)

    PubMed  CAS  Google Scholar 

  43. Khatib, Z.A.; Matsushime, H.; Valentine, M.; Shapiro, D.N.; Sherr, C.J.; Look, A.T.: Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res., 53, 5535–5541 (1993)

    PubMed  CAS  Google Scholar 

  44. Krek, W.; Nigg, E.A.: Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J., 10, 305–316 (1991)

    PubMed  CAS  Google Scholar 

  45. Krek, W.; Nigg, E.A.: Structure and developmental expression of the chicken CDC2 kinase. EMBO J., 8, 3071–3078 (1989)

    PubMed  CAS  Google Scholar 

  46. Kaffman, A.; Herskowitz, I.; Tjian, R.; O’Shea, E.K.: Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science, 263, 1153–1156 (1994)

    PubMed  CAS  Google Scholar 

  47. Toh-e, A.; Tanaka, K.; Uesono, Y.; Wickner, R.B.: PHO85, a negative regulator of the PHO system, is a homolog of the protein kinase gene, CDC28, of Saccharomyces cerevisiae. Mol. Gen. Genet., 214, 162–164 (1988)

    PubMed  CAS  Google Scholar 

  48. Uesono, Y.; Tanaka, K.; Toh-e, A.: Negative regulators of the PHO system in Saccharomyces cerevisiae: isolation and structural characterization of PHO85. Nucleic Acids Res., 15, 10299–10309 (1987)

    PubMed  CAS  Google Scholar 

  49. Matsushime, H.; Jinno, A.; Takagi, N.; Shibuya, M.: A novel mammalian protein kinase gene (mak) is highly expressed in testicular germ cells at and after meiosis. Mol. Cell. Biol., 10, 2261–2268 (1990)

    PubMed  CAS  Google Scholar 

  50. Labbe, J.C.; Martinez, A.M.; Fesquet, D.; Capony, J.P.; Darbon, J.M.; Derancourt, J.; Devault, A.; Morin, N.; Cavadore, J.C.; Doree, M.: p40MO15 associates with a p36 subunit and requires both nuclear translocation and Thr176 phosphorylation to generate cdk-activating kinase activity in Xenopus oocytes. EMBO J., 13, 5155–5164 (1994)

    PubMed  CAS  Google Scholar 

  51. Shuttleworth, J.; Godfrey, R.; Colman, A.: p40MO15, a cdc2-related protein kinase involved in negative regulation of meiotic maturation of Xenopus oocytes. EMBO J., 9, 3233–3240 (1990)

    PubMed  CAS  Google Scholar 

  52. Eipers, P.G.; Lahti, J.M.; Kidd, V.J.: Structure and expression of the human p58clk-1 protein kinase chromosomal gene. Genomics, 13, 613–621 (1992)

    PubMed  CAS  Google Scholar 

  53. Bunnell, B.A.; Heath, L.S.; Adams, D.E.; Lahti, J.M.; Kidd, V.J.: Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc. Natl. Acad. Sci. USA, 87, 7467–7471 (1990)

    PubMed  CAS  Google Scholar 

  54. Colasanti, J.; Tyers, M.; Sundaresan, V.: Isolation and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays. Proc. Natl. Acad. Sci. USA, 88, 3377–3381 (1991)

    PubMed  CAS  Google Scholar 

  55. Poon, R.Y.; Yamashita, K.; Adamczewski, J.P.; Hunt, T.; Shuttleworth, J.: The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J., 12, 3123–3132 (1993)

    PubMed  CAS  Google Scholar 

  56. Paris, J.; Le Guellec, R.; Couturier, A.; Le Guellec, K.; Omilli, F.; Camonis, J.; MacNeill, S.; Philippe, M.: Cloning by differential screening of a Xenopus cDNA coding for a protein highly homologous to cdc2. Proc. Natl. Acad. Sci. USA, 88, 1039–1043 (1991)

    PubMed  CAS  Google Scholar 

  57. Stern, B.; Ried, G.; Clegg, N.J.; Grigliatti, T.A.; Lehner, C.F.: Genetic analysis of the Drosophila cdc2 homolog. Development, 117, 219–232 (1993)

    PubMed  CAS  Google Scholar 

  58. Clegg, N.J.; Whitehead, I.P.; Williams, J.A.; Spiegelman, G.B.; Grigliatti, T.A.: A developmental and molecular analysis of Cdc2 mutations in Drosophila melanogaster. Genome, 36, 676–685 (1993)

    PubMed  CAS  Google Scholar 

  59. Jimenez, J.; Alphey, L.; Nurse, P.; Glover, D.M.: Complementation of fission yeast cdc2ts and cdc25ts mutants identifies two cell cycle genes from Drosophila: a cdc2 homologue and string. EMBO J., 9, 3565–3571 (1990)

    PubMed  CAS  Google Scholar 

  60. Lehner, C.F.; O’Farrell, P.H.: Drosophila cdc2 homologul: a functional homolog is coexpressed with a cognate variant. EMBO J., 9, 3573–3581 (1990)

    PubMed  CAS  Google Scholar 

  61. Fesquet, D.; Labbe, J.C.; Derancourt, J.; Capony, J.P.; Galas, S.; Girard, F.; Lorca, T.; Shuttleworth, J.; Doree, M.; Cavadore, J.C.: The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J., 12, 3111–3121 (1993)

    PubMed  CAS  Google Scholar 

  62. Pickham, K.M.; Meyer, A.N.; Li, J.; Donoghue, D.J.: Requirement of mosXe protein kinase for meiotic maturation of Xenopus oocytes induced by a cdc2 mutant lacking regulatory phosphorylation sites. Mol. Cell. Biol., 12, 3192–3203 (1992)

    PubMed  CAS  Google Scholar 

  63. Inze, D.; Ferreira, P.; Hemerly, A.; Van Montagu, M.: Control of cell division in plants. Biochem. Soc. Trans., 20, 80–84 (1992)

    PubMed  CAS  Google Scholar 

  64. Imajuku, Y.; Hirayama, T.; Endoh, H.; Oka, A.: Exon-intron organization of the Arabidopsis thaliana protein kinase genes CDC2a and CDC2b. FEBS Lett., 304, 73–77 (1992)

    PubMed  CAS  Google Scholar 

  65. Hirayama, T.; Imajuku, Y.; Anai, T.; Matsui, M.; Oka, A.: Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene, 105, 159–165 (1991)

    PubMed  CAS  Google Scholar 

  66. Ferreira, P.C.; Hemerly, A.S.; Villarroel, R.; Van Montagu, M.; Inze, D.: The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell, 3, 531–540 (1991)

    PubMed  CAS  Google Scholar 

  67. Kidd, V.J.; Luo, W.; Xiang, J.L.; Tu, F.; Easton, J.; McCune, S.; Snead, M.L.: Regulated expression of a cell division control-related protein kinase during development. Cell Growth Differ., 2, 85–93 (1991)

    PubMed  CAS  Google Scholar 

  68. Gray, N.S.; Wodicka, L.; Thunnissen, A.M.; Norman, T.C.; Kwon, S.; Espinoza, F.H.; Morgan, D.O.; Barnes, G.; LeClerc, S.; Meijer, L.; Kim, S.H.; Lockhart, D.J.; Schultz, P.G.: Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science, 281, 533–538 (1998)

    PubMed  CAS  Google Scholar 

  69. Lawrie, A.M.; Noble, M.E.; Tunnah, P.; Brown, N.R.; Johnson, L.N.; Endicott, J.A.: Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat. Struct. Biol., 4, 796–801 (1997)

    PubMed  CAS  Google Scholar 

  70. Schulze-Gahmen, U.; De Bondt, H.L.; Kim, S.H.: High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J. Med. Chem., 39, 4540–4546 (1996)

    PubMed  CAS  Google Scholar 

  71. Russo, A.A.; Jeffrey, P.D.; Pavletich, N.P.: Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol., 3, 696–700 (1996)

    PubMed  CAS  Google Scholar 

  72. Russo, A.A.; Jeffrey, P.D.; Patten, A.K.; Massague, J.; Pavletich, N.P.: Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature, 382, 325–331 (1996)

    PubMed  CAS  Google Scholar 

  73. De Azevedo, W.F., Jr.; Mueller-Dieckmann, H.J.; Schulze-Gahmen, U.; Worland, P.J.; Sausville, E.; Kim, S.H.: Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA, 93, 2735–2740 (1996)

    PubMed  Google Scholar 

  74. Bourne, Y.; Watson, M.H.; Hickey, M.J.; Holmes, W.; Rocque, W.; Reed, S.I.; Tainer, J.A.: Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell, 84, 863–874 (1996)

    PubMed  CAS  Google Scholar 

  75. Jeffrey, P.D.; Russo, A.A.; Polyak, K.; Gibbs, E.; Hurwitz, J.; Massague, J.; Pavletich, N.P.: Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 376, 313–320 (1995)

    PubMed  CAS  Google Scholar 

  76. De Bondt, H.L.; Rosenblatt, J.; Jancarik, J.; Jones, H.D.; Morgan, D.O.; Kim, S.H.: Crystal structure of cyclin-dependent kinase 2. Nature, 363, 595–602 (1993)

    PubMed  Google Scholar 

  77. Gu, Y.; Rosenblatt, J.; Morgan, D.O.: Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J., 11, 3995–4005 (1992)

    PubMed  CAS  Google Scholar 

  78. Tsai, L.H.; Harlow, E.; Meyerson, M.: Isolation of the human cdk2 gene that encodes the cyclin A-and adenovirus E1A-associated p33 kinase. Nature, 353, 174–177 (1991)

    PubMed  CAS  Google Scholar 

  79. Ninomiya-Tsuji, J.; Nomoto, S.; Yasuda, H.; Reed, S.I.; Matsumoto, K.: Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation. Proc. Natl. Acad. Sci. USA, 88, 9006–9010 (1991)

    PubMed  CAS  Google Scholar 

  80. Elledge, S.J.; Spottswood, M.R.: A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation in Saccharomyces cerevisiae, is a homolog of Xenopus EgI. EMBO J., 10, 2653–2659 (1991)

    PubMed  CAS  Google Scholar 

  81. Ershler, M.; Nagorskaya, T.V.; Visser, J.W.; Belyavsky, A.V.: Novel CDC2-related protein kinases produced in murine hematopoietic stem cells. Gene, 124, 305–306 (1993)

    PubMed  CAS  Google Scholar 

  82. Kato, J.Y.; Matsuoka, M.; Strom, D.K.; Sherr, C.J.: Regulation of cyclin d-dependent kinase 4 (cdk4) by cdk4-activating kinase. Mol. Cell. Biol., 14, 2713–2721 (1994)

    PubMed  CAS  Google Scholar 

  83. Matsushime, H.; Ewen, M.E.; Strom, D.K.; Kato, J.Y.; Hanks, S.K.; Roussel, M.F.; Sherr, C.J.: Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell, 71, 323–334 (1992)

    PubMed  CAS  Google Scholar 

  84. Rasmussen, S.W.: A 37.5 kb region of yeast chromosome X includes the SME1, MEF2, GSH1 and CSD3 genes, a TCP-1-related gene, an open reading frame similar to the DAL80 gene, and a tRNA(Arg). Yeast, 11, 873–883 (1995)

    PubMed  CAS  Google Scholar 

  85. Yoshida, M.; Kawaguchi, H.; Sakata, Y.; Kominami, K.; Hirano, M.; Shima, H.; Akada, R.; Yamashita, I.: Initiation of meiosis and sporulation in Sacharomyces cerevisiae requires a novel protein kinase homologue. Mol. Gen. Genet., 221, 176–186 (1990)

    PubMed  CAS  Google Scholar 

  86. Michaelis, C.; Weeks, G.: Isolation and characterization of a cdc 2 cDNA from Dictyostelium discoideum. Biochim. Biophys. Acta, 1132, 35–42 (1992)

    PubMed  CAS  Google Scholar 

  87. Michaelis, C.; Weeks, G.: The isolation from a unicellular organism, Dictyostelium discoideum, of a highly-related cdc2 gene with characteristics of the PCTAIRE subfamily. Biochim. Biophys. Acta, 1179, 117–124 (1993)

    PubMed  CAS  Google Scholar 

  88. Boxem, M.; Srinivasan, D.G.; van den Heuvel, S.: The Caenorhabditis elegans gene ncc-1 encodes a cdc2-related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development, 126, 2227–2239 (1999)

    PubMed  CAS  Google Scholar 

  89. Mori, H.; Palmer, R.E.; Sternberg, P.W.: The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase. Mol. Gen. Genet., 245, 781–786 (1994)

    PubMed  CAS  Google Scholar 

  90. Cho, F.S.; Phillips, K.S.; Khan, S.A.; Weaver, T.E.: Cloning of the rat cyclin-dependent kinase 4 cDNA: implication in proliferation-dependent expression in rat tissues. Biochem. Biophys. Res. Commun., 191, 860–865 (1993)

    PubMed  CAS  Google Scholar 

  91. Molz, L.; Beach, D.: Characterization of the fission yeast mcs2 cyclin and its associated protein kinase activity. EMBO J., 12, 1723–1732 (1993)

    PubMed  CAS  Google Scholar 

  92. Mottram, J.C.; Smith, G.: A family of trypanosome cdc2-related protein kinases. Gene, 162, 147–152 (1995)

    PubMed  CAS  Google Scholar 

  93. Riabowol, K.; Draetta, G.; Brizuela, L.; Vandre, D.; Beach, D.: The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell, 57, 393–401 (1989)

    PubMed  CAS  Google Scholar 

  94. Damagnez, V.; Cottarel, G.: Candida albicans CDK1 and CYB1: cDNA homologues of the cdc2/CDC28 and cdc13/CLB1/CLB2 cell cycle control genes. Gene, 172, 137–141 (1996)

    PubMed  CAS  Google Scholar 

  95. Sherlock, G.; Bahman, A.M.; Mahal, A.; Shieh, J.C.; Ferreira, M.; Rosamond, J.: Molecular cloning and analysis of CDC28 and cyclin homologues from the human fungal pathogen Candida albicans. Mol. Gen. Genet., 245, 716–723 (1994)

    PubMed  CAS  Google Scholar 

  96. Navarro-Garcia, F.; Sanchez, M.; Pla, J.; Nombela, C.: Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol. Cell. Biol., 15, 2197–2206 (1995)

    PubMed  CAS  Google Scholar 

  97. Mayer, K.; Schuller, C.; Wambutt, R.; Murphy, G.; et al.: Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature, 402, 769–777 (1999)

    PubMed  CAS  Google Scholar 

  98. Moran, T.V.; Walker, J.C.: Molecular cloning of two novel protein kinase genes from Arabidopsis thaliana. Biochim. Biophys. Acta, 1216, 9–14 (1993)

    PubMed  CAS  Google Scholar 

  99. Hirai, T.; Yamashita, M.; Yoshikuni, M.; Tokumoto, T.; Kajiura, H.; Sakai, N.; Nagahama, Y.: Isolation and characterization of goldfish cdk2, a cognate variant of the cell cycle regulator cdc2. Dev. Biol., 152, 113–120 (1992)

    PubMed  CAS  Google Scholar 

  100. Kerr, M.; Fischer, J.E.; Purushotham, K.R.; Gao, D.; Nakagawa, Y.; Maeda, N.; Ghanta, V.; Hiramoto, R.; Chegini, N.; Humphreys-Beher, M.G.: Characterization of the synthesis and expression of the GTA-kinase from transformed and normal rodent cells. Biochim. Biophys. Acta, 1218, 375–387 (1994)

    PubMed  CAS  Google Scholar 

  101. Hellmich, M.R.; Kennison, J.A.; Hampton, L.L.; Battey, J.F.: Cloning and characterization of the Drosophila melanogaster CDK5 homolog. FEBS Lett., 356, 317–321 (1994)

    PubMed  CAS  Google Scholar 

  102. Yang, L.; Farin, C.E.: Identification of cDNAs encoding bovine cyclin B and Cdk1/Cdc2. Gene, 141, 283–286 (1994)

    PubMed  CAS  Google Scholar 

  103. Noguchi, E.; Sekiguchi, T.; Yamashita, K.; Nishimoto, T.: Molecular cloning and identification of two types of hamster cyclin-dependent kinases: cdk2 and cdk2L. Biochem. Biophys. Res. Commun., 197, 1524–1529 (1993)

    PubMed  CAS  Google Scholar 

  104. Tassan, J.P.; Jaquenoud, M.; Leopold, P.; Schultz, S.J.; Nigg, E.A.: Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. USA, 92, 8871–8875 (1995)

    PubMed  CAS  Google Scholar 

  105. Ohshima, T.; Nagle, J.W.; Pant, H.C.; Joshi, J.B.; Kozak, C.A.; Brady, R.O.; Kulkarni, A.B.: Molecular cloning and chromosomal mapping of the mouse cyclin-dependent kinase 5 gene. Genomics, 28, 585–588 (1995)

    PubMed  CAS  Google Scholar 

  106. Ino, H.; Ishizuka, T.; Chiba, T.; Tatibana, M.: Expression of CDK5 (PSSALRE kinase), a neural cdc2-related protein kinase, in the mature and developing mouse central and peripheral nervous systems. Brain Res., 661, 196–206 (1994)

    PubMed  CAS  Google Scholar 

  107. Tirode, F.; Busso, D.; Coin, F.; Egly, J.M.: Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell, 3, 87–95 (1999)

    PubMed  CAS  Google Scholar 

  108. Akoulitchev, S.; Reinberg, D.: The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes Dev., 12, 3541–3550 (1998)

    PubMed  CAS  Google Scholar 

  109. Wu, L.; Yee, A.; Liu, L.; Carbonaro-Hall, D.; Venkatesan, N.; Tolo, V.T.; Hall, F.L.: Molecular cloning of the human CAK1 gene encoding a cyclin-dependent kinase-activating kinase. Oncogene, 9, 2089–2096 (1994)

    PubMed  CAS  Google Scholar 

  110. Tassan, J.P.; Schultz, S.J.; Bartek, J.; Nigg, E.A.: Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J. Cell. Biol., 127, 467–478 (1994)

    PubMed  CAS  Google Scholar 

  111. Levedakou, E.N.; He, M.; Baptist, E.W.; Craven, R.J.; Cance, W.G.; Welcsh, P.L.; Simmons, A.; Naylor, S.L.; Leach, R.J.; Lewis, T.B.; et al.: Two novel human serine/threonine kinases with homologies to the cell cycle regulating Xenopus MO15, and NIMA kinases: cloning and characterization of their expression pattern. Oncogene, 9, 1977–1988 (1994)

    PubMed  CAS  Google Scholar 

  112. Fisher, R.P.; Morgan, D.O.: A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell, 78, 713–724 (1994)

    PubMed  CAS  Google Scholar 

  113. Darbon, J.M.; Devault, A.; Taviaux, S.; Fesquet, D.; Martinez, A.M.; Galas, S.; Cavadore, J.C.; Doree, M.; Blanchard, J.M.: Cloning, expression and subcellular localization of the human homolog of p40MO15 catalytic subunit of cdk-activating kinase. Oncogene, 9, 3127–3138 (1994)

    PubMed  CAS  Google Scholar 

  114. Liu, H.; Rice, A.P.: Genomic organization and characterization of promoter function of the human CDK9 gene. Gene, 252, 51–59 (2000)

    PubMed  CAS  Google Scholar 

  115. Fu, T.J.; Peng, J.; Lee, G.; Price, D.H.; Flores, O.: Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J. Biol. Chem., 274, 34527–34530 (1999)

    PubMed  CAS  Google Scholar 

  116. Best, J.L.; Presky, D.H.; Swerlick, R.A.; Burns, D.K.; Chu, W.: Cloning of a full-length cDNA sequence encoding a cdc2-related protein kinase from human endothelial cells. Biochem. Biophys. Res. Commun., 208, 562–568 (1995)

    PubMed  CAS  Google Scholar 

  117. Grana, X.; De Luca, A.; Sang, N.; Fu, Y.; Claudio, P.P.; Rosenblatt, J.; Morgan, D.O.; Giordano, A.: PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc. Natl. Acad. Sci. USA, 91, 3834–3838 (1994)

    PubMed  CAS  Google Scholar 

  118. Gervasi, C.; Szaro, B.G.: The Xenopus laevis homologue to the neuronal cyclin-dependent kinase (cdk5) is expressed in embryos by gastrulation. Brain Res. Mol. Brain Res., 33, 192–200 (1995)

    PubMed  CAS  Google Scholar 

  119. Di Lallo, G.; Gargano, S.; Maresca, B.: The Histoplasma capsulatum cdc2 gene is transcriptionally regulated during the morphologic transition. Gene, 140, 51–57 (1994)

    PubMed  Google Scholar 

  120. Michaelis, C.; Luo, Q.; Weeks, G.: A Dictyostelium discoideum gene, which is highly related to mo15 from Xenopus, is expressed during growth but not during development. Biochem. Cell Biol., 73, 51–58 (1995)

    PubMed  CAS  Google Scholar 

  121. Meyerson, M.; Enders, G.H.; Wu, C.L.; Su, L.K.; Gorka, C.; Nelson, C.; Harlow, E.; Tsai, L.H.: A family of human cdc2-related protein kinases. EMBO J., 11, 2909–2917 (1992)

    PubMed  CAS  Google Scholar 

  122. Russo, A.A.; Tong, L.; Lee, J.O.; Jeffrey, P.D.; Pavletich, N.P.: Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature, 395, 237–243 (1998)

    PubMed  CAS  Google Scholar 

  123. Osmani, A.H.; van Peij, N.; Mischke, M.; O’Connell, M.J.; Osmani, S.A.: A single p34cdc2 protein kinase (encoded by nimXcdc2) is required at G1 and G2 in Aspergillus nidulans. J. Cell Sci., 107, 1519–1528 (1994)

    PubMed  CAS  Google Scholar 

  124. Brown, L.; Hines, J.C.; Ray, D.S.: The Crithidia fasciculata CRK gene encodes a novel cdc2-related protein containing large inserts between highly conserved domains. Nucleic Acids Res., 20, 5451–5456 (1992)

    PubMed  CAS  Google Scholar 

  125. Lew, J.; Winkfein, R.J.; Paudel, H.K.; Wang, J.H.: Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2. J. Biol. Chem., 267, 25922–25926 (1992)

    PubMed  CAS  Google Scholar 

  126. Xiong, Y.; Zhang, H.; Beach, D.: D Type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell, 71, 505–514 (1992)

    PubMed  CAS  Google Scholar 

  127. Hellmich, M.R.; Pant, H.C.; Wada, E.; Battey, J.F.: Neuronal cdc2-like kinase: a cdc2-related protein kinase with predominantly neuronal expression. Proc. Natl. Acad. Sci. USA, 89, 10867–10871 (1992)

    PubMed  CAS  Google Scholar 

  128. Stepanova, L.; Ershler, M.A.; Belyavsky, A.V.: Sequence of the cDNA encoding murine CRK4 protein kinase. Gene, 149, 321–324 (1994)

    PubMed  CAS  Google Scholar 

  129. Matsuoka, M.; Kato, J.Y.; Fisher, R.P.; Morgan, D.O.; Sherr, C.J.: Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase. Mol. Cell. Biol., 14, 7265–7275 (1994)

    PubMed  CAS  Google Scholar 

  130. Ershler, M.A.; Nagorskaia, T.V.; Fisser Ia, V.; Beliavskii, A.V.: Identification of new protein kinase genes, similar to kinases of the cdc2 family and expressed in murine hematopoietic stem cells. Dokl. Akad. Nauk, 324, 893–897 (1992)

    PubMed  CAS  Google Scholar 

  131. Lee, J.M.; Greenleaf, A.L.: CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr., 1, 149–167 (1991)

    PubMed  CAS  Google Scholar 

  132. Okuda, T.; Cleveland, J.L.; Downing, J.R.: PCTAIRE-1 and PCTAIRE-3, two members of a novel cdc2/CDC28-related protein kinase gene family. Oncogene, 7, 2249–2258 (1992)

    PubMed  CAS  Google Scholar 

  133. Lohia, A.; Samuelson, J.: Cloning of the Eh cdc2 gene from Entamoeba histolytica encoding a protein kinase p34cdc2 homologue. Gene, 127, 203–207 (1993)

    PubMed  CAS  Google Scholar 

  134. Bladt, F.; Birchmeier, C.: Characterization and expression analysis of the murine rck gene: a protein kinase with a potential function in sensory cells. Differentiation, 53, 115–122 (1993)

    PubMed  CAS  Google Scholar 

  135. Hirt, H.; Pay, A.; Bogre, L.; Meskiene, I.; Heberle-Bors, E.: cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants. Plant J., 4, 61–69 (1993)

    PubMed  CAS  Google Scholar 

  136. Mottram, J.C.; Kinnaird, J.H.; Shiels, B.R.; Tait, A.; Barry, J.D.: A novel CDC2-related protein kinase from Leishmania mexicana, LmmCRK1, is post-translationally regulated during the life cycle. J. Biol. Chem., 268, 21044–21052 (1993)

    PubMed  CAS  Google Scholar 

  137. Ross-Macdonald, P.B.; Graeser, R.; Kappes, B.; Franklin, R.; Williamson, D.H.: Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum. Eur. J. Biochem., 220, 693–701 (1994)

    PubMed  CAS  Google Scholar 

  138. Crawford, J.; Ianzano, L.; Savino, M.; Whitmore, S.; Cleton-Jansen, A.M.; Settasatian, C.; d’apolito, M.; Seshadri, R.; Pronk, J.C.; Auerbach, A.D.; Verlander, P.C.; Mathew, C.G.; Tipping, A.J.; Doggett, N.A.; Zelante, L.; Callen, D.F.; Savoia, A.: The PISSLRE gene: structure, exon skipping, and exclusion as tumor suppressor in breast cancer. Genomics, 56, 90–97 (1999)

    PubMed  CAS  Google Scholar 

  139. Grana, X.; Claudio, P.P.; De Luca, A.; Sang, N.; Giordano, A.: PISSLRE, a human novel CDC2-related protein kinase. Oncogene, 9, 2097–2103 (1994)

    PubMed  CAS  Google Scholar 

  140. Brambilla, R.; Draetta, G.: Molecular cloning of PISSLRE, a novel putative member of the cdk family of protein serine/threonine kinases. Oncogene, 9, 3037–3041 (1994)

    PubMed  CAS  Google Scholar 

  141. Fobert, P.R.; Gaudin, V.; Lunness, P.; Coen, E.S.; Doonan, J.H.: Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell, 8, 1465–1476 (1996)

    PubMed  CAS  Google Scholar 

  142. Hong, Z.; Miao, G.H.; Verma, D.P.: p34cdc2 protein kinase homolog from mothbean (Vigna aconitifolia). Plant Physiol., 101, 1399–1400 (1993)

    PubMed  CAS  Google Scholar 

  143. Kotani, S.; Endo, T.; Kitagawa, M.; Higashi, H.; Onaya, T.: A variant form of cyclin-dependent kinase 2 (Cdk2) in a malignantly transformed rat thyroid (FRTL-Tc) cell line. Oncogene, 10, 663–669 (1995)

    PubMed  CAS  Google Scholar 

  144. Hosokawa, Y.; Yang, M.; Kaneko, S.; Tanaka, M.; Nakashima, K.: Synergistic gene expressions of cyclin E, cdk2, cdk5 and E2F-1 during the prolactin-induced G1/S transition in rat Nb2 pre-T lymphoma cells. Biochem. Mol. Biol. Int., 37, 393–399 (1995)

    PubMed  CAS  Google Scholar 

  145. Hadano, S.; Hand, C.K.; Osuga, H.; Yanagisawa, Y.; Otomo, A.; Devon, R.S.; Miyamoto, N.; Showguchi-Miyata, J.; Okada, Y.; Singaraja, R.; Figlewicz, D.A.; Kwiatkowski, T.; Hosler, B.A.; Sagie, T.; Skaug, J.; Nasir, J.; Brown, R.H., Jr.; Scherer, S.W.; Rouleau, G.A.; Hayden, M.R.; Ikeda, J.E.: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet., 29, 166–173 (2001)

    PubMed  CAS  Google Scholar 

  146. Nagase, T.; Ishikawa, K.; Suyama, M.; Kikuno, R.; Hirosawa, M.; Miyajima, N.; Tanaka, A.; Kotani, H.; Nomura, N.; Ohara, O.: Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res., 5, 355–364 (1998)

    PubMed  CAS  Google Scholar 

  147. Bandyopadhyay, J.; Bandyopadhyay, A.; Choi, H.S.; Kwon, H.B.; Kang, H.M.: Cloning and characterization of cDNA encoding cdc2 kinase, a component of maturation-promoting factor, in Rana dybowskii. Gen. Comp. Endocrinol., 117, 313–322 (2000)

    PubMed  CAS  Google Scholar 

  148. Bussey, H.; Storms, R.K.; Ahmed, A.; Albermann, K.; et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature, 387, 103–105 (1997)

    PubMed  CAS  Google Scholar 

  149. Salanoubat, M.; Lemcke, K.; Rieger, M.; Ansorge, W.; Unseld, M.; et al.: Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature, 408, 820–822 (2000)

    PubMed  CAS  Google Scholar 

  150. Murakami, Y.; Naitou, M.; Hagiwara, H.; Shibata, T.; Ozawa, M.; Sasanuma, S.; Sasanuma, M.; Tsuchiya, Y.; Soeda, E.; Yokoyama, K.; et al.: Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat. Genet., 10, 261–268 (1995)

    PubMed  CAS  Google Scholar 

  151. Kaldis, P.; Sutton, A.; Solomon, M.J.: The Cdk-activating kinase (CAK) from budding yeast. Cell, 86, 553–564 (1996)

    PubMed  CAS  Google Scholar 

  152. Osmani, S.A.; Pu, R.T.; Morris, N.R.: Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell, 53, 237–244 (1988)

    PubMed  CAS  Google Scholar 

  153. Pu, R.T.; Osmani, S.A.: Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for mitotic exit. EMBO J., 14, 995–1003 (1995)

    PubMed  CAS  Google Scholar 

  154. Pu, R.T.; Xu, G.; Wu, L.; Vierula, J.; O’Donnell, K.; Ye, X.S.; Osmani, S.A.: Isolation of a functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues. J. Biol. Chem., 270, 18110–18116 (1995)

    PubMed  CAS  Google Scholar 

  155. Bain, J.; McLauchlan, H.; Elliott, M.; Cohen, P.: The specificities of protein kinase inhibitors: an update. Biochem. J., 371, 199–204 (2003)

    PubMed  CAS  Google Scholar 

  156. Takahashi, S.; Saito, T.; Hisanaga, S.; Pant, H.C.; Kulkarni, A.B.: Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules. J. Biol. Chem., 278, 10506–10515 (2003)

    PubMed  CAS  Google Scholar 

  157. Hamdane, M.; Sambo, A.V.; Delobel, P.; Begard, S.; Violleau, A.; Delacourte, A.; Bertrand, P.; Benavides, J.; Buee, L.: Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex. J. Biol. Chem., 278, 34026–34034 (2003)

    PubMed  CAS  Google Scholar 

  158. Darios, F.; Muriel, M.P.; Khondiker, M.E.; Brice, A.; Ruberg, M.: Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J. Neurosci., 25, 4159–4168 (2005)

    PubMed  CAS  Google Scholar 

  159. Shelton, S.B.; Krishnamurthy, P.; Johnson, G.V.: Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. J. Neurosci. Res., 76, 110–120 (2004)

    PubMed  CAS  Google Scholar 

  160. Lambourne, S.L.; Sellers, L.A.; Bush, T.G.; Choudhury, S.K.; Emson, P.C.; Suh, Y.H.; Wilkinson, L.S.: Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer’s disease and FTDP-17: evidence for distinct molecular processes underlying tau abnormalities. Mol. Cell. Biol., 25, 278–293 (2005)

    PubMed  CAS  Google Scholar 

  161. Zhu, H.; Klemic, J.F.; Chang, S.; Bertone, P.; Casamayor, A.; Klemic, K.G.; Smith, D.; Gerstein, M.; Reed, M.A.; Snyder, M.: Analysis of yeast protein kinases using protein chips. Nat. Genet., 26, 283–289 (2000)

    PubMed  CAS  Google Scholar 

  162. Bukczynska, P.; Klingler-Hoffmann, M.; Mitchelhill, K.I.; Lam, M.H.C.; Ciccomancini, M.; Tonks, N.K.; Sarcevic, B.; Kemp, B.E.; Tiganis, T.: The T-cell protein tyrosin phosphatase is phosphorylated on Ser-304 by cyclin-dependent protein kinases in mitosis. Biochem. J., 380, 939–949 (2004)

    PubMed  CAS  Google Scholar 

  163. Li, J.; Joo, S.H.; Tsai, M.D.: An NF-κB-specific inhibitor, IκBα, binds to and inhibits cyclin-dependent kinase 4. Biochemistry, 42, 13476–13483 (2003)

    PubMed  CAS  Google Scholar 

  164. Li, J.; Melvin, W.S.; Tsai, M.D.; Muscarella, P.: The nuclear protein p34SEI-1 regulates the kinase activity of cyclin-dependent kinase 4 in a concentration-dependent manner. Biochemistry, 43, 4394–4399 (2004)

    PubMed  CAS  Google Scholar 

  165. Sachs, N.A.; Vaillancourt, R.R.: Cyclin-dependent kinase 11p110 activity in the absence of CK2. Biochim. Biophys. Acta, 1624, 98–108 (2003)

    PubMed  CAS  Google Scholar 

  166. Kesavapany, S.; Li, B.S.; Amin, N.; Zheng, Y.L.; Grant, P.; Pant, H.C.: Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim. Biophys. Acta, 1697, 143–153 (2004)

    PubMed  CAS  Google Scholar 

  167. Yang, L.; MacLellan, W.R.; Han, Z.; Weiss, J.N.; Qu, Z.: Multisite phosphorylation and network dynamics of cyclin-dependent kinase signaling in the eukaryotic cell cycle. Biophys. J., 86, 3432–3443 (2004)

    PubMed  CAS  Google Scholar 

  168. Andres, V.: Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential. Cardiovasc. Res., 63, 11–21 (2004)

    PubMed  CAS  Google Scholar 

  169. Furet, P.: X-ray crystallographic studies of CDK2, a basis for cyclin-dependent kinase inhibitor design in anti-cancer drug research. Curr. Med. Chem. Anticancer Agents, 3, 15–23 (2003)

    PubMed  CAS  Google Scholar 

  170. Zong, H.; Li, Z.; Liu, L.; Hong, Y.; Yun, X.; Jiang, J.; Chi, Y.; Wang, H.; Shen, X.; Hu, Y.; Niu, Z.; Gu, J.: Cyclin-dependent kinase 11(p58) interacts with HBO1 and enhances its histone acetyltransferase activity. FEBS Lett., 579, 3579–3588 (2005)

    PubMed  CAS  Google Scholar 

  171. DÁngiolella, V.; Mari, C.; Nocera, D.; Rametti, L.; Grieco, D.: The spindle checkpoint requires cyclin-dependent kinase activity. Genes Dev., 17, 2520–2525 (2003)

    Google Scholar 

  172. Dou, X.; Wu, D.; An, W.; Davies, J.; Hashmi, S.B.; Ukil, L.; Osmani, S.A.: The PHOA and PHOB cyclin-dependent kinases perform an essential function in Aspergillus nidulans. Genetics, 165, 1105–1115 (2003)

    PubMed  CAS  Google Scholar 

  173. Li, B.S.; Ma, W.; Jaffe, H.; Zheng, Y.; Takahashi, S.; Zhang, L.; Kulkarni, A.B.; Pant, H.C.: Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J. Biol. Chem., 278, 35702–35709 (2003)

    PubMed  CAS  Google Scholar 

  174. Harwell, R.M.; Mull, B.B.; Porter, D.C.; Keyomarsi, K.: Activation of cyclin-dependent kinase 2 by full length and low molecular weight forms of cyclin E in breast cancer cells. J. Biol. Chem., 279, 12695–12705 (2004)

    PubMed  CAS  Google Scholar 

  175. Habran, L.; Bontems, S.; Di Valentin, E.; Sadzot-Delvaux, C.; Piette, J.: Varicella-Zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J. Biol. Chem., 280, 29135–29143 (2005)

    PubMed  CAS  Google Scholar 

  176. Vax, V.V.; Bibi, R.; Diaz-Cano, S.; Gueorguiev, M.; Kola, B.; Borboli, N.; Bressac-de Paillerets, B.; Walker, G.J.; Dedov, II; Grossman, A.B.; Korbonits, M.: Activating point mutations in cyclin-dependent kinase 4 are not seen in sporadic pituitary adenomas, insulinomas or Leydig cell tumours. J. Endocrinol., 178, 301–310 (2003)

    PubMed  CAS  Google Scholar 

  177. Freeman, D.; Riou-Khamlichi, C.; Oakenfull, E.A.; Murray, J.A.: Isolation, characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.). J. Exp. Bot., 54, 303–308 (2003)

    PubMed  CAS  Google Scholar 

  178. Woodard, C.L.; Li, Z.; Kathcart, A.K.; Terrell, J.; Gerena, L.; Lopez-Sanchez, M.; Kyle, D.E.; Bhattacharjee, A.K.; Nichols, D.A.; Ellis, W.; Prigge, S.T.; Geyer, J.A.; Waters, N.C.: Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J. Med. Chem., 46, 3877–3882 (2003)

    PubMed  CAS  Google Scholar 

  179. VanderWel, S.N.; Harvey, P.J.; McNamara, D.J.; Repine, J.T.; Keller, P.R.; Quin, J., 3rd; Booth, R.J.; Elliott, W.L.; Dobrusin, E.M.; Fry, D.W.; Toogood, P.L.: Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J. Med. Chem., 48, 2371–2387 (2005)

    PubMed  CAS  Google Scholar 

  180. Brana, M.F.; Cacho, M.; Garcia, M.L.; Mayoral, E.P.; Lopez, B.; de Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; Munoz-Mingarro, D.; Lozach, O.; Meijer, L.: Pyrazolo[3,4-c]pyridazines as novel and selective inhibitors of cyclin-dependent kinases. J. Med. Chem., 48, 6843–6854 (2005)

    PubMed  CAS  Google Scholar 

  181. Lu, H.; Chang, D.J.; Baratte, B.; Meijer, L.; Schulze-Gahmen, U.: Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J. Med. Chem. 48, 737–743 (2005)

    PubMed  CAS  Google Scholar 

  182. Van Dross, R.; Yao, S.; Asad, S.; Westlake, G.; Mays, D.J.; Barquero, L.; Duell, S.; Pietenpol, J.A.; Browning, P.J.: Constitutively active K-cyclin/cdk6 kinase in Kaposi sarcoma-associated herpesvirus-infected cells. J. Natl. Cancer Inst., 97, 656–666 (2005)

    PubMed  Google Scholar 

  183. Wei, F.Y.; Tomizawa, K.; Ohshima, T.; Asada, A.; Saito, T.; Nguyen, C.; Bibb, J.A.; Ishiguro, K.; Kulkarni, A.B.; Pant, H.C.; Mikoshiba, K.; Matsui, H.; Hisanaga, S.: Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. J. Neurochem., 93, 502–512 (2005)

    PubMed  CAS  Google Scholar 

  184. Zhu, Y.S.; Saito, T.; Asada, A.; Maekawa, S.; Hisanaga, S.: Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. J. Neurochem. 94, 1535–1545 (2005)

    PubMed  CAS  Google Scholar 

  185. Rideout, H.J.; Wang, Q.; Park, D.S.; Stefanis, L.: Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J. Neurosci., 23, 1237–1245 (2003)

    PubMed  CAS  Google Scholar 

  186. Davido, D.J.; Von Zagorski, W.F.; Maul, G.G.; Schaffer, P.A.: The differential requirement for cyclin-dependent kinase activities distinguishes two functions of herpes simplex virus type 1 ICP0. J. Virol., 77, 12603–12616 (2003)

    PubMed  CAS  Google Scholar 

  187. Sanchez, V.; McElroy, A.K.; Spector, D.H.: Mechanisms governing maintenance of Cdk1/cyclin B1 kinase activity in cells infected with human cytomegalovirus. J. Virol., 77, 13214–13224 (2003)

    PubMed  CAS  Google Scholar 

  188. Sanchez, V.; McElroy, A.K.; Yen, J.; Tamrakar, S.; Clark, C.L.; Schwartz, R.A.; Spector, D.H.: Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production. J. Virol., 78, 11219–11232 (2004)

    PubMed  CAS  Google Scholar 

  189. Pic-Taylor, A.; Darieva, Z.; Morgan, B.A.; Sharrocks, A.D.: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol. Cell. Biol., 24, 10036–10046 (2004)

    PubMed  CAS  Google Scholar 

  190. Narayanan, R.; Adigun, A.A.; Edwards, D.P.; Weigel, N.L.: Cyclin-dependent kinase activity is required for progesterone receptor function: novel role for cyclin A/Cdk2 as a progesterone receptor coactivator. Mol. Cell. Biol., 25, 264–277 (2005)

    PubMed  CAS  Google Scholar 

  191. Zhen, X.; Goswami, S.; Abdali, S.A.; Gil, M.; Bakshi, K.; Friedman, E.: Regulation of cyclin-dependent kinase 5 and calcium/calmodulin-dependent protein kinase II by phosphatidylinositol-linked dopamine receptor in rat brain. Mol. Pharmacol., 66, 1500–1508 (2004)

    PubMed  CAS  Google Scholar 

  192. Loog, M.; Morgan, D.O.: Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature, 434, 104–108 (2005)

    PubMed  CAS  Google Scholar 

  193. Hahn, C.M.; Kleinholz, H.; Koester, M.P.; Grieser, S.; Thelen, K.; Pollerberg, G.E.: Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience, 134, 449–465 (2005)

    PubMed  CAS  Google Scholar 

  194. Hisanaga, S.; Saito, T.: The regulation of cyclin-dependent kinase 5 activity through the metabolism of p35 or p39 Cdk5 activator. Neurosignals, 12, 221–229 (2003)

    PubMed  CAS  Google Scholar 

  195. Gompel, M.; Soulie, C.; Ceballos-Picot, I.; Meijer, L.: Expression and activity of cyclin-dependent kinases and glycogen synthase kinase-3 during NT2 neuronal differentiation. Neurosignals, 13, 134–143 (2004)

    PubMed  CAS  Google Scholar 

  196. Boudolf, V.; Vlieghe, K.; Beemster, G.T.; Magyar, Z.; Torres Acosta, J.A.; Maes, S.; Van Der Schueren, E.; Inze, D.; De Veylder, L.: The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell, 16, 2683–2692 (2004)

    PubMed  CAS  Google Scholar 

  197. Shimotohno, A.; Umeda-Hara, C.; Bisova, K.; Uchimiya, H.; Umeda, M.: The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis. Plant Cell, 16, 2954–2966 (2004)

    PubMed  CAS  Google Scholar 

  198. Gutierrez, R.; Quiroz-Figueroa, F.; Vazquez-Ramos, J.M.: Maize cyclin D2 expression, associated kinase activity, and effect of phytohormones during germination. Plant Cell Physiol., 46, 166–173 (2005)

    PubMed  CAS  Google Scholar 

  199. Vanstraelen, M.; Torres Acosta, J.A.; De Veylder, L.; Inze, D.; Geelen, D.: A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol., 135, 1417–1429 (2004)

    PubMed  CAS  Google Scholar 

  200. Corellou, F.; Camasses, A.; Ligat, L.; Peaucellier, G.; Bouget, F.Y.: Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase. Plant Physiol., 138, 1627–1636 (2005)

    PubMed  CAS  Google Scholar 

  201. Yamaguchi, M.; Kato, H.; Yoshida, S.; Yamamura, S.; Uchimiya, H.; Umeda, M.: Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. Proc. Natl. Acad. Sci. USA, 100, 8019–8023 (2003)

    PubMed  CAS  Google Scholar 

  202. Fu, A.K.; Fu, W.Y.; Ng, A.K.; Chien, W.W.; Ng, Y.P.; Wang, J.H.; Ip, N.Y.: Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc. Natl. Acad. Sci. USA, 101, 6728–6733 (2004)

    PubMed  CAS  Google Scholar 

  203. Watanabe, N.; Arai, H.; Iwasaki, J.-i.; Shiima, M.; Ogata, K.; Hunter, T.; Osada, H.: Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic weel via multiple pathways. Proc. Natl. Acad. Sci. USA, 102, 11663–11668 (2005)

    PubMed  CAS  Google Scholar 

  204. Lim, J.T.; Mansukhani, M.; Weinstein, I.B.: Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells. Proc. Natl. Acad. Sci USA, 102, 5156–5161 (2005)

    PubMed  CAS  Google Scholar 

  205. Bartova, I.; Otyepka, M.; Kriz, Z.; Koca, J.: The mechanism of inhibition of the cyclin-dependent kinase-2 as revealed by the molecular dynamics study on the complex CDK2 with the peptide substrate HHASPRK. Protein Sci., 14, 445–451 (2005)

    PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Cyclin-dependent kinase. In: Schomburg, D., Schomburg, I., Chang, A. (eds) Springer Handbook of Enzymes. Springer Handbook of Enzymes, vol S4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85701-3_6

Download citation

Publish with us

Policies and ethics