Skip to main content

Histidine kinase

  • Chapter
Springer Handbook of Enzymes

Part of the book series: Springer Handbook of Enzymes ((HDBKENZYMES,volume S4))

  • 927 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein, C.; Entian, K.D.: Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl. Environ. Microbiol., 60, 2793–2801 (1994)

    PubMed  CAS  Google Scholar 

  2. Roberts, D.L.; Bennett, D.W.; Forst, S.A.: Identification of the site of phosphorylation on the osmosensor, EnvZ, of Escherichia coli. J. Biol. Chem., 269, 8728–8733 (1994)

    PubMed  CAS  Google Scholar 

  3. Pernestig, A.K.; Georgellis, D.; Romeo, T.; Suzuki, K.; Tomenius, H.; Normark, S.; Melefors, O.: The Escherichia coli BarA-UvrY two-component system is needed for efficient switching between glycolytic and gluconeogenic carbon sources. J. Bacteriol., 185, 843–853 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. Paulsen, I.T.; Banerjei, L.; Myers, G.S.; et al.: Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science, 299, 2071–2074 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Kleerebezem, M.; Boekhorst, J.; van Kranenburg, R.; et al.: Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci. USA, 100, 1990–1995 (2003)

    Article  PubMed  CAS  Google Scholar 

  6. Deng, W.; Liou, S.R.; Plunkett, G.; Mayhew, G.F.; Rose, D.J.; Burland, V.; Kodoyianni, V.; Schwartz, D.C.; Blattner, F.R.: Comparative genomics of Salmonella enterica serovar typhi strains Ty2 and CT18. J. Bacteriol., 185, 2330–2337 (2003)

    Article  PubMed  CAS  Google Scholar 

  7. Bruggemann, H.; Baumer, S.; Fricke, W.F.; Wiezer, A.; Liesegang, H.; Decker, I.; Herzberg, C.; Martinez-Arias, R.; Merkl, R.; Henne, A.; Gottschalk, G.: The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA, 100, 1316–1321 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Nagasawa, S.; Tokishita, S.; Aiba, H.; Mizuno, T.: A novel sensor-regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol. Microbiol., 6, 799–807 (1992)

    Article  PubMed  CAS  Google Scholar 

  9. Pernestig, A.K.; Melefors, O.; Georgellis, D.: Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J. Biol. Chem., 276, 225–231 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki, K.; Wang, X.; Weilbacher, T.; Pernestig, A.K.; Melefors, O.; Georgellis, D.; Babitzke, P.; Romeo, T.: Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol., 184, 5130–5140 (2002)

    Article  PubMed  CAS  Google Scholar 

  11. Welch, R.A.; Burland, V.; Plunkett, G. III; Redford, P.; Roesch, P.; Rasko, D.; Buckles, E.L.; Liou, S.-R.; Boutin, A.; Hackett, J.; Stroud, D.; Mayhew, G.F.; Rose, D.J.; Zhou, S.; Schwartz, D.C.; Perna, N.T.; Mobley, H.L.T.; Donnenberg, M.S.; Blattner, F.R.: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA, 99, 17020–17024 (2002)

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto, Y.; Aiba, H.; Baba, T.; Hayashi, K.; et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli-K12 genome corresponding to 50.0–68.8 min on the linkage map and analysis of its sequence features. DNA Res., 4, 91–113 (1997)

    Article  PubMed  Google Scholar 

  13. Pickard, D.; Li, J.; Roberts, M.; Maskell, D.; Hone, D.; Levine, M.; Dougan, G.; Chatfield, S.: Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression. Infect. Immun., 62, 3984–3993 (1994)

    PubMed  CAS  Google Scholar 

  14. Evers, S.; Courvalin, P.: Regulation of VanB-type vancomycin resistance gene expression by the VanS(B)-VanR (B) two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol., 178, 1302–1309 (1996)

    PubMed  CAS  Google Scholar 

  15. Diep, D.B.; Havarstein, L.S.; Nes, I.F.: A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol. Microbiol., 18, 631–639 (1995)

    Article  PubMed  CAS  Google Scholar 

  16. Diep, D.B.; Havarstein, L.S.; Nes, I.F.: Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J. Bacteriol., 178, 4472–4483 (1996)

    PubMed  CAS  Google Scholar 

  17. Diep, D.B.; Havarstein, L.S.; Nissen-Meyer, J.; Nes, I.F.: The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol., 60, 160–166 (1994)

    PubMed  CAS  Google Scholar 

  18. Virlogeux, I.; Waxin, H.; Ecobichon, C.; Lee, J.O.; Popoff, M.Y.: Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis J. Bacteriol., 178, 1691–1698 (1996)

    PubMed  CAS  Google Scholar 

  19. Supply, P.; Magdalena, J.; Himpens, S.; Locht, C.: Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol. Microbiol., 26, 991–1003 (1997)

    Article  PubMed  CAS  Google Scholar 

  20. Jones, A.L.; DeShazer, D.; Woods, D.E.: Identification and characterization of a two-component regulatory system involved in invasion of eukaryotic cells and heavy-metal resistance in Burkholderia pseudomallei. Infect. Immun., 65, 4972–4977 (1997)

    PubMed  CAS  Google Scholar 

  21. Hyyrylainen, H.L.; Bolhuis, A.; Darmon, E.; Muukkonen, L.; Koski, P.; Vitikainen, M.; Sarvas, M.; Pragai, Z.; Bron, S.; van Dijl, J.M.; Kontinen, V.P.: A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol. Microbiol., 41, 1159–1172 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Kunst, F.; Ogasawara, N.; Moszer, I.; et al: The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390, 249–256 (1997)

    Article  PubMed  CAS  Google Scholar 

  23. Medina, N.; Vannier, F.; Roche, B.; Autret, S.; Levine, A.; Seror, S.J.: Sequencing of regions downstream of addA (98 degrees) and citG (289 degrees) in Bacillus subtilis. Microbiology, 143, 3305–3308 (1997)

    PubMed  CAS  Google Scholar 

  24. Wipat, A.; Brignell, S.C.; Guy, B.J.; et al.: The yvsA-yvqA (293 degrees-289 degrees) region of the Bacillus subtilis chromosome containing genes involved in metal ion uptake and a putative sigma factor. Microbiology, 144, 1593–1600 (1998)

    PubMed  CAS  Google Scholar 

  25. Ma, S.; Wozniak, D.J.; Ohman, D.E.: Identification of the histidine protein kinase KinB in Pseudomonas aeruginosa and its phosphorylation of the alginate regulator algB. J. Biol. Chem., 272, 17952–17960 (1997)

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto, H.; Murata, M.; Sekiguchi, J.: The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis. Mol. Microbiol., 37, 898–912 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto, H.; Uchiyama, S.; Nugroho, F.A.; Sekiguchi, J.: Cloning and sequencing of a 35.7 kb in the 70 degree-73 degree region of the Bacillus subtilis genome reveal genes for a new two-component system, three spore germination proteins, an iron uptake system and a general stress response protein. Gene, 194, 191–199 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. Lashbrook, C.C.; Tieman, D.M.; Klee, H.J.: Differential regulation of the tomato ETR gene family throughout plant development. Plant J., 15, 243–252 (1998)

    Article  PubMed  CAS  Google Scholar 

  29. Brandenburg, S.A.; Williamson, C.L.; Slocum, R.D.: Characterization of a cDNA encoding the small subunit of Arabidopsis carbamoyl phospohate synthetase (accession no. U73175) (PGR 98-087). Plant Physiol., 117, 717–720 (1998)

    Article  Google Scholar 

  30. Sato-Nara, K.; Yuhashi, K.I.; Higashi, K.; Hosoya, K.; Kubota, M.; Ezura, H.: Stage-and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol., 120, 321–330 (1990)

    Article  Google Scholar 

  31. Comeau, D.E.; Ikenaka, K.; Tsung, K.L.; Inouye, M.: Primary characterization of the protein products of the Escherichia coli ompB locus: structure and regulation of synthesis of the OmpR and EnvZ proteins. J. Bacteriol., 164, 578–584 (1985)

    PubMed  CAS  Google Scholar 

  32. Forst, S.; Comeau, D.; Norioka, S.; Inouye, M.: Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem., 262, 16433–16438 (1987)

    PubMed  CAS  Google Scholar 

  33. Jin, Q.; Yuan, Z.; Xu, J.; Wang, Y.; et al.:Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res., 30, 4432–4441 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Kanamaru, K.; Aiba, H.; Mizuno, T.: Transmembrane signal transduction and osmoregulation in Escherichia coli: I. Analysis by site-directed mutagenesis of the amino acid residues involved in phosphotransfer between the two regulatory components, EnvZ and OmpR. J. Biochem., 108, 483–487 (1990)

    PubMed  CAS  Google Scholar 

  35. Mizuno, T.; Wurtzel, E.T.; Inouye, M.: Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene product. J. Biol. Chem., 257, 13692–13698 (1982)

    PubMed  CAS  Google Scholar 

  36. Tanaka, T.; Saha, S.K.; Tomomori, C.; Ishima, R.; et al.: NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature, 396, 88–92 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. Tokishita, S.; Kojima, A.; Mizuno, T.: Transmembrane signal transduction and osmoregulation in Escherichia coli: functional importance of the transmembrane regions of membrane-located protein kinase, EnvZ. J. Biochem., 111, 707–713 (1992)

    PubMed  CAS  Google Scholar 

  38. Tomomori, C.; Tanaka, T.; Dutta, R.; Park, H.; et al.: Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat. Struct. Biol., 6, 729–734 (1999)

    Article  PubMed  CAS  Google Scholar 

  39. MacFarlane, S.A.; Merrick, M.: The nucleotide sequence of the nitrogen regulation gene ntrB and the glnA-ntrBC intergenic region of Klebsiella pneumoniae. Nucleic Acids Res., 13, 7591–7606 (1985)

    Article  PubMed  CAS  Google Scholar 

  40. Miranda-Rios, J.; Sanchez-Pescador, R.; Urdea, M.; Covarrubias, A.A.: The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res., 15, 2757–2770 (1987)

    Article  PubMed  CAS  Google Scholar 

  41. Ninfa, A.J.; Bennett, R.L.: Identification of the site of autophosphorylation of the bacterial protein kinase/phosphatase NRII. J. Biol. Chem., 266, 6888–6893 (1991)

    PubMed  CAS  Google Scholar 

  42. Plunkett, G. 3rd; Burland, V.; Daniels, D.L.; Blattner, F.R.: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res., 21, 3391–3398 (1993)

    Article  PubMed  CAS  Google Scholar 

  43. Rocha, M.; Vazquez, M.; Garciarrubio, A.; Covarrubias, A.A.: Nucleotide sequence of the glnA-glnL intercistronic region of Escherichia coli. Gene, 37, 91–99 (1985)

    Article  PubMed  CAS  Google Scholar 

  44. Ueno-Nishio, S.; Mango, S.; Reitzer, L.J.; Magasanik, B.: Identification and regulation of the glnL operator-promoter of the complex glnALG operon of Escherichia coli. J. Bacteriol., 160, 379–384 (1984)

    PubMed  CAS  Google Scholar 

  45. Leroux, B.; Yanofsky, M.F.; Winans, S.C.; Ward, J.E.; Ziegler, S.F.; Nester, E.W.: Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. EMBO J., 6, 849–856 (1987)

    PubMed  CAS  Google Scholar 

  46. Kofoid, E.C.; Parkinson, J.S.: Tandem translation starts in the cheA locus of Escherichia coli. J. Bacteriol., 173, 2116–2119 (1991)

    PubMed  CAS  Google Scholar 

  47. McEvoy, M.M.; Hausrath, A.C.; Randolph, G.B.; Remington, S.J.; Dahlquist, F.W.: Two binding modes reveal flexibility in kinase/response regulator interactions in the bacterial chemotaxis pathway. Proc. Natl. Acad. Sci. USA, 95, 7333–7338 (1998)

    Article  PubMed  CAS  Google Scholar 

  48. McEvoy, M.M.; Muhandiram, D.R.; Kay, L.E.; Dahlquist, F.W.: Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy. Biochemistry, 35, 5633–5640 (1996)

    Article  PubMed  CAS  Google Scholar 

  49. McNally, D.F.; Matsumura, P.: Bacterial chemotaxis signaling complexes: formation of a CheA/CheW complex enhances autophosphorylation and affinity for CheY. Proc. Natl. Acad. Sci. USA, 88, 6269–6273 (1991)

    Article  PubMed  CAS  Google Scholar 

  50. Mutoh, N.; Simon, M.I.: Nucleotide sequence corresponding to five chemotaxis genes in Escherichia coli. J. Bacteriol., 165, 161–166 (1986)

    PubMed  CAS  Google Scholar 

  51. Oosawa, K.; Hess, J.F.; Simon, M.I.: Mutants defective in bacterial chemotaxis show modified protein phosphorylation. Cell, 53, 89–96 (1988)

    Article  PubMed  CAS  Google Scholar 

  52. Welch, M.; Chinardet, N.; Mourey, L.; Birck, C.; Samama, J.P.: Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nat. Struct. Biol., 5, 25–29 (1998)

    Article  PubMed  CAS  Google Scholar 

  53. Zhou, H.; Dahlquist, F.W.: Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR. Biochemistry, 36, 699–710 (1997)

    Article  PubMed  CAS  Google Scholar 

  54. Zhou, H.; McEvoy, M.M.; Lowry, D.F.; Swanson, R.V.; Simon, M.I.; Dahlquist, F.W.: Phosphotransfer and CheY-binding domains of the histidine autokinase CheA are joined by a flexible linker. Biochemistry, 35, 433–443 (1996)

    Article  PubMed  CAS  Google Scholar 

  55. Albin, R.; Weber, R.; Silverman, P.M.: The Cpx proteins of Escherichia coli K12. Immunologic detection of the chromosomal cpxA gene product. J. Biol. Chem., 261, 4698–4705 (1986)

    PubMed  CAS  Google Scholar 

  56. Rainwater, S.; Silverman, P.M.: The Cpx proteins of Escherichia coli K-12: evidence that cpxA, ecfB, ssd, and eup mutations all identify the same gene. J. Bacteriol., 172, 2456–2461 (1990)

    PubMed  CAS  Google Scholar 

  57. Weber, R.F.; Silverman, P.M.: The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J. Mol. Biol., 203, 467–478 (1988)

    Article  PubMed  CAS  Google Scholar 

  58. Makino, K.; Shinagawa, H.; Amemura, M.; Nakata, A.: Nucleotide sequence of the phoR gene, a regulatory gene for the phosphate regulon of Escherichia coli. J. Mol. Biol., 192, 549–556 (1986)

    Article  PubMed  CAS  Google Scholar 

  59. Scholten, M.; Tommassen, J.: Topology of the PhoR protein of Escherichia coli and functional analysis of internal deletion mutants. Mol. Microbiol., 8, 269–275 (1993)

    Article  PubMed  CAS  Google Scholar 

  60. Yamada, M.; Makino, K.; Shinagawa, H.; Nakata, A.: Regulation of the phosphate regulon of Escherichia coli: properties of phoR deletion mutants and subcellular localization of PhoR protein. Mol. Gen. Genet., 220, 366–372 (1990)

    Article  PubMed  CAS  Google Scholar 

  61. Amemura, M.; Makino, K.; Shinagawa, H.; Nakata, A.: Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine protein kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J. Bacteriol., 172, 6300–6307 (1990)

    PubMed  CAS  Google Scholar 

  62. Amemura, M.; Makino, K.; Shinagawa, H.; Nakata, A.: Nucleotide sequence of the phoM region of Escherichia coli: four open reading frames may constitute an operon. J. Bacteriol., 168, 294–302 (1986)

    PubMed  CAS  Google Scholar 

  63. Burland, V.; Plunkett, G.; Sofia, H.J.; Daniels, D.L.; Blattner, F.R.: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res., 23, 2105–2119 (1995)

    Article  PubMed  CAS  Google Scholar 

  64. Drury, L.S.; Buxton, R.S.: Identification and sequencing of the Escherichia coli cet gene which codes for an inner membrane protein, mutation of which causes tolerance to colicin E2. Mol. Microbiol., 2, 109–119 (1988)

    Article  PubMed  CAS  Google Scholar 

  65. Liljestrom, P.; Laamanen, I.; Palva, E.T.: Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. J. Mol. Biol., 201, 663–673 (1988)

    Article  PubMed  CAS  Google Scholar 

  66. Stock, A.; Chen, T.; Welsh, D.; Stock, J.: CheA protein, a central regulator of bacterial chemotaxis, belongs to a family of proteins that control gene expression in response to changing environmental conditions. Proc. Natl. Acad. Sci. USA, 85, 1403–1407 (1988)

    Article  PubMed  CAS  Google Scholar 

  67. Foster-Hartnett, D.; Cullen, P.J.; Gabbert, K.K.; Kranz, R.G.: Sequence, genetic, and lacZ fusion analyses of a nifR3-ntrB-ntrC operon in Rhodobacter capsulatus. Mol. Microbiol., 8, 903–914 (1993)

    Article  PubMed  CAS  Google Scholar 

  68. Jones, R.; Haselkorn, R.: The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues required for nitrogen fixation. Mol. Gen. Genet., 215, 507–516 (1989)

    Article  PubMed  CAS  Google Scholar 

  69. Burland, V.; Plunkett, G.; Daniels, D.L.; Blattner, F.R.: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics, 16, 551–561 (1993)

    Article  PubMed  CAS  Google Scholar 

  70. Friedrich, M.J.; Kadner, R.J.: Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol., 169, 3556–3563 (1987)

    PubMed  CAS  Google Scholar 

  71. Island, M.D.; Wei, B.Y.; Kadner, R.J.: Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol., 174, 2754–2762 (1992)

    PubMed  CAS  Google Scholar 

  72. Ronson, C.W.; Astwood, P.M.; Nixon, B.T.; Ausubel, F.M.: Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products. Nucleic Acids Res., 15, 7921–7934 (1987)

    Article  PubMed  CAS  Google Scholar 

  73. Nixon, B.T.; Ronson, C.W.; Ausubel, F.M.: Two-component regulatory systems responsive to environmental stimulti share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA, 83, 7850–7854 (1986)

    Article  PubMed  CAS  Google Scholar 

  74. Morel, P.; Powell, B.S.; Rogowsky, P.M.; Kado, C.I.: Characterization of the virA virulence gene of the nopaline plasmid, pTiC58, of Agrobacterium tumefaciens. Mol. Microbiol., 3, 1237–1246 (1989)

    Article  PubMed  CAS  Google Scholar 

  75. Barnett, M.J.; Fisher, R.F.; Jones, T.; et al.: Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA, 98, 9883–9888 (2001)

    Article  PubMed  CAS  Google Scholar 

  76. David, M.; Daveran, M.L.; Batut, J.; Dedieu, A.; Domergue, O.; Ghai, J.; Hertig, C.; Boistard, P.; Kahn, D.: Cascade regulation of nif gene expression in Rhizobium meliloti. Cell, 54, 671–683 (1988)

    Article  PubMed  CAS  Google Scholar 

  77. Gong, W.; Hao, B.; Chan, M.K.: New mechanistic insights from structural studies of the oxygen-sensing domain of Bradyrhizobium japonicum FixL. Biochemistry, 39, 3955–3962 (2000)

    Article  PubMed  CAS  Google Scholar 

  78. Lois, A.F.; Ditta, G.S.; Helinski, D.R.: The oxygen sensor FixL of Rhizobium meliloti is a membrane protein containing four possible transmembrane segments. J. Bacteriol., 175, 1103–1109 (1993)

    PubMed  CAS  Google Scholar 

  79. Nohno, T.; Noji, S.; Taniguchi, S.; Saito, T.; The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Res., 17, 2947–2957 (1989)

    Article  PubMed  CAS  Google Scholar 

  80. Noji, S.; Nohno, T.; Saito, T.; Taniguchi, S.: The narK gene product participates in nitrate transport induced in Escherichia coli nitrate-respiring cells. FEBS Lett., 252, 139–143 (1989)

    Article  PubMed  CAS  Google Scholar 

  81. Stewart, V.; Parales, J., Jr.; Merkel, S.M.: Structure of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J. Bacteriol., 171, 2229–2234 (1989)

    PubMed  CAS  Google Scholar 

  82. Engelke, T.; Jording, D.; Kapp, D.; Puhler, A.: Identification and sequence analysis of the Rhizobium meliloti, dctA gene encoding the C4-dicarboxylate carrier. J. Bacteriol., 171, 5551=5560 (1989)

    PubMed  Google Scholar 

  83. Finan, T.M.; Weidner, S.; Wong, K.; Buhrmester, J.; et al. The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc. Natl. Acad. Sci. USA, 98, 9889–9894 (2001)

    Article  PubMed  CAS  Google Scholar 

  84. Jiang, J.; Gu, B.H.; Albright, L.M.; Nixon, B.T.: Conservation between coding and regulatory elements of Rhizobium meliloti, and Rhizobium leguminosarum dct genes. J. Bacteriol., 171, 5244–5253 (1989)

    PubMed  CAS  Google Scholar 

  85. Wang, Y.P.; Birkenhead, K.; Boesten, B.; Manian, S.; O’Gara, F.: Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Gene, 85, 135–144 (1989)

    Article  PubMed  CAS  Google Scholar 

  86. Watson, R.J.: Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD. Mol. Plant Microbe Interact., 3, 174–181 (1990)

    PubMed  CAS  Google Scholar 

  87. Henner, D.J.; Yang, M.; Ferrari, E.: Localization of Bacillus subtilis sacU(-Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol., 170, 5102–5109 (1988)

    PubMed  CAS  Google Scholar 

  88. Kunst, F.; Debarbouille, M.; Msadek, T.; Young, M.; Mauel, C.; Karamata, D.; Klier, A.; Rapoport, G.; Dedonder, R.: Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol., 170, 5093–5101 (1988)

    PubMed  CAS  Google Scholar 

  89. Tanaka, T.; Kawata, M.: Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol., 170, 3593–3600 (1988)

    PubMed  CAS  Google Scholar 

  90. Cano, D.A.; Martinez-Moya, M.; Pucciarelli, M.G.; Groisman, E.A.; Casadesus, J.; Garcia-Del Portillo, F.: Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect. Immun., 69, 6463–6474 (2001)

    Article  PubMed  CAS  Google Scholar 

  91. Miller, S.I.; Kukral, A.M.; Mekalanos, J.J.: A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA, 86, 5054–5058 (1989)

    Article  PubMed  CAS  Google Scholar 

  92. Jayaratne, P.; Keenleyside, W.J.; MacLachlan, P.R.; Dodgson, C.; Whitfield, C.: Characterization of rcsB and rcsC from Escherichia coli O9:K30:H12 and examination of the role of the rcs regulatory system in expression of group I capsular polysaccharides. J. Bacteriol., 175, 5384–5394 (1993)

    PubMed  CAS  Google Scholar 

  93. Stout, V.; Gottesman, S.: RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J. Bacteriol., 172, 659–669 (1990)

    PubMed  CAS  Google Scholar 

  94. Blattner, F.R.; Burland, V.; Plunkett, G.; Sofia, H.J.; Daniels, D.L.: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res., 21, 5408–5417 (1993)

    Article  PubMed  CAS  Google Scholar 

  95. Leonhartsberger S.; Huber, A.; Lottspeich, F.; Bock, A.: The hydH/G Genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J. Mol. Biol., 307, 93–105 (2001)

    Article  PubMed  CAS  Google Scholar 

  96. Stoker, K.; Reijnders, W.N.; Oltmann, L.F.; Stouthamer, A.H.: Initial cloning and sequencing of hydHG, an operon homologous to ntrBC and regulating the labile hydrogenase activity in Escherichia coli K-12. J. Bacteriol., 171, 4448–4456 (1989)

    PubMed  CAS  Google Scholar 

  97. Gottfert, M.; Grob, P.; Hennecke, H.: Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc. Natl. Acad. Sci. USA, 87, 2680–2684 (1990)

    Article  PubMed  CAS  Google Scholar 

  98. Gottfert, M.; Rothlisberger, S.; Kundig, C.; Beck, C.; Marty, R.; Hennecke, H.: Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol., 183, 1405–1412 (2001)

    Article  PubMed  CAS  Google Scholar 

  99. Kaneko, T.; Nakamura, Y.; Sato, S.; et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res., 9, 189–197 (2002)

    Article  PubMed  Google Scholar 

  100. Antoniewski, C.; Savelli, B.; Stragier, P.: The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol., 172, 86–93 (1990)

    PubMed  CAS  Google Scholar 

  101. Perego, M.; Cole, S.P.; Burbulys, D.; Trach, K.; Hoch, J.A.: Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol., 171, 6187–6196 (1989)

    PubMed  CAS  Google Scholar 

  102. Arico, B.; Miller, J.F.; Roy, C.; Stibitz, S.; Monack, D.; Falkow, S.; Gross, R.; Rappuoli, R.: Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. USA, 86, 6671–6675 (1989)

    Article  PubMed  CAS  Google Scholar 

  103. Arico, B.; Scarlato, V.; Monack, D.M.; Falkow, S.; Rappuoli, R.: Structural and genetic analysis of the bvg locus in Bordetella species. Mol. Microbiol., 5, 2481–2491 (1991)

    Article  PubMed  CAS  Google Scholar 

  104. Beier, D.; Schwarz, B.; Fuchs, T.M.; Gross, R.: In vivo characterization of the unorthodox BvgS two-component sensor protein of Bordetella pertussis. J. Mol. Biol., 248, 596–610 (1995)

    Article  PubMed  CAS  Google Scholar 

  105. Perraud, A.L.; Kimmel, B.; Weiss, V.; Gross, R.: Specificity of the BvgAS and EvgAS phosphorelay is mediated by the C-terminal HPt domains of the sensor proteins. Mol. Microbiol., 27, 875–887 (1998)

    Article  PubMed  CAS  Google Scholar 

  106. Uhl, M.A.; Miller, J.F.: Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc. Natl. Acad. Sci. USA, 91, 1163–1167 (1994)

    Article  PubMed  CAS  Google Scholar 

  107. Uhl, M.A.; Miller, J.F.: Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J., 15, 1028–1036 (1996)

    PubMed  CAS  Google Scholar 

  108. Aiba, H.; Baba, T.; Hayashi, K.; et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0–40.1 min region on the linkage map. DNA Res., 3, 363–377 (1996)

    Article  PubMed  CAS  Google Scholar 

  109. Hill, T.M.; Tecklenburg, M.L.; Pelletier, A.J.; Kuempel, P.L.: Tus, the transacting gene required for termination of DNA replication in Escherichia coli, encodes a DNA-binding protein. Proc. Natl. Acad. Sci. USA, 86, 1593–1597 (1989)

    Article  PubMed  CAS  Google Scholar 

  110. Roecklein, B.; Pelletier, A.; Kuempel, P. The tus gene of Escherichia coli: autoregulation, analysis of flanking sequences and identification of a complementary system in Salmonella typhimurium. Res. Microbiol., 142, 169–175 (1991)

    Article  PubMed  CAS  Google Scholar 

  111. Roecklein, B.A.; Kuempel, P.L.: In vivo characterization of tus gene expression in Escherichia coli. Mol. Microbiol., 6, 1655–1661 (1992)

    Article  PubMed  CAS  Google Scholar 

  112. Goodner, B.; Hinkle, G.; Gattung, S.; et al. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 294, 2323–2328 (2001)

    Article  PubMed  CAS  Google Scholar 

  113. Rogowsky, P.M.; Powell, B.S.; Shirasu, K.; Lin, T.S.; Morel, P.; Zyprian, E.M.; Steck, T.R.; Kado, C.I.: Molecular characterization of the vir regulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid, 23, 85–106 (1990)

    Article  PubMed  CAS  Google Scholar 

  114. Wood, D.W.; Setubal, J.C.; Kaul, R.; et al. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science, 294, 2317–2323 (2001)

    Article  PubMed  CAS  Google Scholar 

  115. McCleary, W.R.; Zusman, D.R.: FrzE of Myxococcus xanthus is homologous to both CheA and CheY of Salmonella typhimurium. Proc. Natl. Acad. Sci. USA, 87, 5898–5902 (1990)

    Article  PubMed  CAS  Google Scholar 

  116. McCleary, W.R.; Zusman, D.R.: Purification and characterization of the Myxococcus xanthus FrzE protein shows that it has autophosphorylation activity. J. Bacteriol., 172, 6661–6668 (1990)

    PubMed  CAS  Google Scholar 

  117. Maharaj, R.; Rumbak, E.; Jones, W.A.; Robb, S.M.; Robb, F.T.; Woods, D.R.: Nucleotide sequence of the Vibrio alginolyticus glnA region. Arch. Microbiol., 152, 542–549 (1989)

    Article  PubMed  CAS  Google Scholar 

  118. Bartsevich, V.V.; Shestakov, S.V.: The dspA gene product of the cyanobacterium Synechocystis sp. strain PCC 6803 influences sensitivity to chemically different growth inhibitors and has amino acid similarity to histidine protein kinases. Microbiology, 141, 2915–2920 (1995)

    PubMed  CAS  Google Scholar 

  119. Kaneko, T.; Sato, S.; Kotani, H.; et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res., 3, 109–136 (1996)

    Article  PubMed  CAS  Google Scholar 

  120. Reilly, P.; Hulmes, J.D.; Pan, Y.C.; Nelson, N.: Molecular cloning and sequencing of the psaD gene encoding subunit II of photosystem I from the cyanobacterium, Synechocystis sp. PCC 6803. J. Biol. Chem., 263, 17658–17662 (1988)

    PubMed  CAS  Google Scholar 

  121. Walderhaug, M.O.; Polarek, J.W.; Voelkner, P.; Daniel, J.M.; Hesse, J.E.; Altendorf, K.; Epstein, W.: KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. J. Bacteriol., 174, 2152–2159 (1992)

    PubMed  CAS  Google Scholar 

  122. Zimmann, P.; Puppe, W.; Altendorf, K.: Membrane topology analysis of the sensor kinase kdpD of Escherichia coli. J. Biol. Chem., 270, 28282–28288 (1995)

    Article  PubMed  CAS  Google Scholar 

  123. Georgellis, D.; Kwon, O.; De Wulf, P.; Lin, E.C.: Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J. Biol. Chem., 273, 32864–32869 (1998)

    Article  PubMed  CAS  Google Scholar 

  124. Georgellis, D.; Lynch, A.S.; Lin, E.C.: In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli. J. Bacteriol., 179, 5429–5435 (1997)

    PubMed  CAS  Google Scholar 

  125. Iuchi, S.; Matsuda, Z.; Fujiwara, T.; Lin, E.C.: The arc B gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol. Microbiol., 4, 715–727 (1990)

    Article  PubMed  CAS  Google Scholar 

  126. Kato, M.; Mizuno, T.; Hakoshima, T.: Crystallization of a complex between a novel C-terminal transmitter, HPt domain, of the anaerobic sensor kinase ArcB and the chemotaxis response regulator CheY. Acta Crystallogr. Sect. D, 54, 140–142 (1998)

    Article  CAS  Google Scholar 

  127. Kato, M.; Mizuno, T.; Shimizu, T.; Hakoshima, T.: Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell, 88, 717–723 (1997)

    Article  PubMed  CAS  Google Scholar 

  128. Kato, M.; Mizuno, T.; Shimizu, T.; Hakoshima, T.: Refined structure of the histidine-containing phosphotransfer (HPt) domain of the anaerobic sensor kinase ArcB from Escherichia coli at 1.57 A resolution. Acta Crystallogr. Sect. D, 55, 1842–1849 (1999)

    Article  CAS  Google Scholar 

  129. Kwon, O.; Georgellis, D.; Lin, E.C.: Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J. Bacteriol., 182, 3858–3862 (2000)

    Article  PubMed  CAS  Google Scholar 

  130. Anthamatten, D.; Hennecke, H.: The regulatory status of the fixL-and fixJ-like genes in Bradyrhizobium japonicum may be different from that in Rhizobium meliloti. Mol. Gen. Genet., 225, 38–48 (1991)

    Article  PubMed  CAS  Google Scholar 

  131. Gong, W.; Hao, B.; Mansy, S.S.; Gonzalez, G.; Gilles-Gonzalez, M.A.; Chan, M.K.: Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl. Acad. Sci. USA, 95, 15177–15182 (1998)

    Article  PubMed  CAS  Google Scholar 

  132. Lapidus, A.; Galleron, N.; Sorokin, A.; Ehrlich, S.D.: Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. Microbiology, 143, 3431–3441 (1997)

    PubMed  CAS  Google Scholar 

  133. Seki, T.; Yoshikawa, H.; Takahashi, H.; Saito, H.: Nucleotide sequence of the Bacillus subtilis phoR gene. J. Bacteriol., 170, 5935–5938 (1988)

    PubMed  CAS  Google Scholar 

  134. Anba, J.; Bidaud, M.; Vasil, M.L.; Lazdunski, A.: Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J. Bacteriol., 172, 4685–4689 (1990)

    PubMed  CAS  Google Scholar 

  135. Stover, C.K.; Pham, X.Q.; Erwin, A.L.; et al.: Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406, 959–964 (2000)

    Article  PubMed  CAS  Google Scholar 

  136. Kasahara, M.; Nakata, A.; Shinagawa, H.: Molecular analysis of the Escherichia coli phoP-phoQ operon. J. Bacteriol., 174, 492–498 (1992)

    PubMed  CAS  Google Scholar 

  137. Kaminski, P.A.; Elmerich, C.: Involvement of fixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol. Microbiol., 5, 665–673 (1991)

    Article  PubMed  CAS  Google Scholar 

  138. Kaminski, P.A.; Mandon, K.; Arigoni, F.; Desnoues, N.; Elmerich, C.: Regulation of nitrogen fixation in Azorhizobium caulinodans: identification of a fixK-like gene, a positive regulator of nifA. Mol. Microbiol., 5, 1983–1991 (1991)

    Article  PubMed  CAS  Google Scholar 

  139. Chiang, R.C.; Cavicchioli, R.; Gunsalus, R.P.: Identification and characterization of narQ, a second nitrate sensor for nitrate-dependent gene regulation in Escherichia coli. Mol. Microbiol., 6, 1913–1923 (1992)

    Article  PubMed  CAS  Google Scholar 

  140. Rabin, R.S.; Stewart, V.: Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA, 89, 8419–8423 (1992)

    Article  PubMed  CAS  Google Scholar 

  141. Steglitz-Morsdorf, U.; Morsdorf, G.; Kaltwasser, H.: Cloning, heterologous expression, and sequencing of the Proteus vulgaris glnAntrBC operon and implications of nitrogen control on heterologous urease expression. FEMS Microbiol. Lett., 106, 157–164 (1993)

    Article  PubMed  CAS  Google Scholar 

  142. Fuhrer, D.K.; Ordal, G.W.: Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol., 173, 7443–7448 (1991)

    PubMed  CAS  Google Scholar 

  143. Harms, N.; Reijnders, W.N.; Anazawa, H.; van der Palen, C.J.; van Spanning, R.J.; Oltmann, L.F.; Stouthamer, A.H.: Identification of a two-component regulatory system controlling methanol dehydrogenase synthesis in Paracoccus denitrificans. Mol. Microbiol., 8, 457–470 (1993)

    Article  PubMed  CAS  Google Scholar 

  144. Nagasawa, S.; Ishige, K.; Mizuno, T.: Novel members of the two-component signal transduction genes in Escherichia coli. J. Biochem., 114, 350–357 (1993)

    PubMed  CAS  Google Scholar 

  145. Kato, A.; Ohnishi, H.; Yamamoto, K.; Furuta, E.; Tanabe, H.; Utsumi, R.: Transcription of emrKy is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci. Biotechnol. Biochem., 64, 1203–1209 (2000)

    Article  PubMed  CAS  Google Scholar 

  146. Utsumi, R.; Katayama, S.; Ikeda, M.; Igaki, S.; Nakagawa, H.; Miwa, A.; Taniguchi, M.; Noda, M.: Cloning and sequence analysis of the evgAS genes involved in signal transduction of Escherichia coli K-12. Nucleic Acids Symp. Ser., 1992, 149–150 (1992)

    Google Scholar 

  147. Utsumi, R.; Katayama, S.; Taniguchi, M.; Horie, T.; Ikeda, M.; Igaki, S.; Nakagawa, H.; Miwa, A.; Tanabe, H.; Noda, M.: Newly identified genes involved in the signal transduction of Escherichia coli K-12. Gene, 140, 73–77 (1994)

    Article  PubMed  CAS  Google Scholar 

  148. Klein, C.; Kaletta, C.; Entian, K.D.: Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/response regulator system. Appl. Environ. Microbiol., 59, 296–303 (1993)

    PubMed  CAS  Google Scholar 

  149. Hobbs, M.; Collie, E.S.; Free, P.D.; Livingston, S.P.; Mattick, J.S.: PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol. Microbiol., 7, 669–682 (1993)

    Article  PubMed  CAS  Google Scholar 

  150. Sorokin, A.; Zumstein, E.; Azevedo, V.; Ehrlich, S.D.; Serror, P.: The organization of the Bacillus subtilis 168 chromosome region between the spo-VA and serA genetic loci, based on sequence data. Mol. Microbiol., 10, 385–395 (1993)

    PubMed  CAS  Google Scholar 

  151. Sun, G.; Sharkova, E.; Chesnut, R.; Birkey, S.; Duggan, M.F.; Sorokin, A.; Pujic, P.; Ehrlich, S.D.; Hulett, F.M.: Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol., 178, 1374–1385 (1996)

    PubMed  CAS  Google Scholar 

  152. Roland, K.L.; Martin, L.E.; Esther, C.R.; Spitznagel, J.K.: Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J. Bacteriol., 175, 4154–4164 (1993)

    PubMed  CAS  Google Scholar 

  153. Jiang, S.Q.; Yu, G.Q.; Li, Z.G.; Hong, J.S.: Genetic evidence for modulation of the activator by two regulatory proteins involved in the exogenous induction of phosphoglycerate transport in Salmonella typhimurium. J. Bacteriol., 170, 4304–4308 (1988)

    PubMed  CAS  Google Scholar 

  154. Yang, Y.L.; Goldrick, D.; Hong, J.S.: Identification of the products and nucleotide sequences of two regulatory genes involved in the exogenous induction of phosphoglycerate transport in Salmonella typhimurium. J. Bacteriol., 170, 4299–4303 (1988)

    PubMed  CAS  Google Scholar 

  155. Chopra, A.K.; Peterson, J.W.; Prasad, R.: Cloning and sequence analysis of hydrogenase regulatory genes (hydHG) from Salmonella typhimurium. Biochim. Biophys. Acta, 1129, 115–118 (1991)

    PubMed  CAS  Google Scholar 

  156. Hamblin, M.J.; Shaw, J.G.; Kelly, D.J.: Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus. Mol. Gen. Genet., 237, 215–224 (1993)

    Article  PubMed  CAS  Google Scholar 

  157. Golby, P.; Davies, S.; Kelly, D.J.; Guest, J.R.; Andrews, S.C.: Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J. Bacteriol., 181, 1238–1248 (1999)

    PubMed  CAS  Google Scholar 

  158. Janausch, I.G.; Garcia-Moreno, I.; Unden, G.: Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J. Biol. Chem., 277, 39809–39814 (2002)

    Article  PubMed  CAS  Google Scholar 

  159. Zientz, E.; Bongaerts, J.; Unden, G.: Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR) genes) two-component regulatory system. J. Bacteriol., 180, 5421–5425 (1998)

    PubMed  CAS  Google Scholar 

  160. Ansaldi, M.; Jourlin-Castelli, C.; Lepelletier, M.; Theraulaz, L.; Mejean, V.: Rapid dephosphorylation of the TorR response regulatory by the TorS unorthodox sensor in Escherichia coli. J. Bacteriol., 183, 2691–2695 (2001)

    Article  PubMed  CAS  Google Scholar 

  161. Jourlin, C.; Ansaldi, M.; Mejean, V.: Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli. J. Mol. Biol., 267, 770–777 (1997)

    Article  PubMed  CAS  Google Scholar 

  162. Jourlin, C.; Bengrine, A.; Chippaux, M.; Mejean, V.: An unorthodox sensor protein (TorS) mediates the induction of the tor structural genes in response to trimethylamine N-oxide in Escherichia coli. Mol. Microbiol., 20, 1297–1306 (1996)

    Article  PubMed  CAS  Google Scholar 

  163. Simon, G.; Mejean, V.; Jourlin, C.; Chippaux, M.; Pascal, M.C.: The torR gene of Escherichia coli encodes a response regulator protein involved in the expression of the trimethylamine N-oxide reductase genes. J. Bacteriol., 176, 5601–5606 (1994)

    PubMed  CAS  Google Scholar 

  164. Aiba, H.; Nagaya, M.; Mizuno, T.: Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol. Microbiol., 8, 81–91 (1993)

    Article  PubMed  CAS  Google Scholar 

  165. Kobayashi, K.; Shoji, K.; Shimizu, T.; Nakano, K.; Sato, T.; Kobayashi, Y.: Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J. Bacteriol., 177, 176–182 (1995)

    PubMed  CAS  Google Scholar 

  166. LeDeaux, J.R.; Grossman, A.D.: Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol., 177, 166–175 (1995)

    PubMed  CAS  Google Scholar 

  167. Winters, P.; Caldwell, R.; Enfield, L.; Ferrari, E.: The ampS-nprE (124 degrees-127 degrees) region of the Bacillus subtilis 168 chromosome: sequencing of a 27 kb segment and identification of several genes in the area. Microbiology, 142, 3033–3037 (1996)

    PubMed  CAS  Google Scholar 

  168. Churcher, C.; Bowman, S.; Badcock, K.; et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IX. Nature, 387, 84–87 (1997)

    PubMed  CAS  Google Scholar 

  169. Maeda, T.; Wurgler-Murphy, S.M.; Saito, H.: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 369, 242–245 (1994)

    Article  PubMed  CAS  Google Scholar 

  170. Ota, I.M.; Varshavsky, A.: A yeast protein similar to bacterial two-component regulators. Science, 262, 566–569 (1993)

    Article  PubMed  CAS  Google Scholar 

  171. Sperandio, V.; Torres, A.G.; Kaper, J.B.: Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol. Microbiol., 43, 809–821 (2002)

    Article  PubMed  CAS  Google Scholar 

  172. Patriarca, E.J.; Riccio, A.; Tate, R.; Colonna-Romano, S.; Iaccarino, M.; Defez, R.: The ntrBC genes of Rhizobium leguminosarum are part of a complex operon subject to negative regulation. Mol. Microbiol., 9, 569–577 (1993)

    Article  PubMed  CAS  Google Scholar 

  173. Engelke, G.; Gutowski-Eckel, Z.; Kiesau, P.; Siegers, K.; Hammelmann, M.; Entian, K.D.: Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl. Environ. Microbiol., 60, 814–825 (1994)

    PubMed  CAS  Google Scholar 

  174. Fleischmann, R.D.; Adams, M.D.; White, O.; et al.: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512 (1995)

    Article  PubMed  CAS  Google Scholar 

  175. Langen, H.; Takacs, B.; Evers, S.; Berndt, P.; Lahm, H.W.; Wipf, B.; Gray, C.; Fountoulakis, M.: Two-dimensional map of the proteome of Haemophilus influenzae. Electrophoresis, 21, 411–429 (2000)

    Article  PubMed  CAS  Google Scholar 

  176. Lee, T.Y.; Makino, K.; Shinagawa, H.; Amemura, M.; Nakata, A.: Phosphate regulon in members of the family Enterobacteriaceae: comparison of the phoB-phoR operons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae. J. Bacteriol., 171, 6593–6599 (1989)

    PubMed  CAS  Google Scholar 

  177. Machado, H.B.; Yates, M.G.; Funayama, S.; Rigo, L.U.; Steffens, M.B.; Souza, E.M.; Pedrosa, F.O.: The ntrBC genes of Azospirillum brasilense are part of a nifR3-like-ntrB-ntrC operon and are negatively regulated. Can. J. Microbiol., 41, 674–684 (1995)

    Article  PubMed  CAS  Google Scholar 

  178. Hrabak, E.M.; Willis, D.K.: The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol., 174, 3011–3020 (1992)

    PubMed  CAS  Google Scholar 

  179. da Silva, A.C.; Ferro, J.A.; Reinach, F.C.; et al.: Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459–463 (2002)

    Article  PubMed  Google Scholar 

  180. Tang, J.L.; Liu, Y.N.; Barber, C.E.; Dow, J.M.; Wootton, J.C.; Daniels, M.J.: Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol. Gen. Genet., 226, 409–417 (1991)

    Article  PubMed  CAS  Google Scholar 

  181. Chang, C.; Kwok, S.F.; Bleecker, A.B.; Meyerowitz, E.M.: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539–544 (1993)

    Article  PubMed  CAS  Google Scholar 

  182. Chen, Y.F.; Randlett, M.D.; Findell, J.L.; Schaller, G.E.: Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem., 277, 19861–19866 (2002)

    Article  PubMed  CAS  Google Scholar 

  183. Rodriguez, F.I.; Esch, J.J.; Hall, A.E.; Binder, B.M.; Schaller, G.E.; Bleecker, A.B.: A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283, 996–998 (1999)

    Article  PubMed  CAS  Google Scholar 

  184. Schaller, G.E.; Bleecker, A.B.: Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 270, 1809–1811 (1995)

    Article  PubMed  CAS  Google Scholar 

  185. Schaller, G.E.; Ladd, A.N.; Lanahan, M.B.; Spanbauer, J.M.; Bleecker, A.B.: The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J. Biol. Chem., 270, 12526–12530 (1995)

    Article  PubMed  CAS  Google Scholar 

  186. Theologis, A.; Ecker, J.R.; Palm, C.J.; et al.: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 408, 816–820 (2000)

    Article  PubMed  Google Scholar 

  187. Bott, M.; Meyer, M.; Dimroth, P.: Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae. Mol. Microbiol., 18, 533–546 (1995)

    Article  PubMed  CAS  Google Scholar 

  188. Kaspar, S.; Perozzo, R.; Reinelt, S.; Meyer, M.; Pfister, K.; Scapozza, L.; Bott, M.: The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol. Microbiol., 33, 858–872 (1999)

    Article  PubMed  CAS  Google Scholar 

  189. Bassler, B.L.; Wright, M.; Showalter, R.E.; Silverman, M.R.: Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol., 9, 773–786 (1993)

    Article  PubMed  CAS  Google Scholar 

  190. Bassler, B.L.; Wright, M.; Silverman, M.R.: Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol., 13, 273–286 (1994)

    Article  PubMed  CAS  Google Scholar 

  191. Louw, M.E.; Reid, S.J.; James, D.M.; Watson, T.G.: Cloning and sequencing the degS-degU operon from an alkalophilic Bacillus brevis. Appl. Microbiol. Biotechnol., 42, 78–84 (1994)

    Article  PubMed  CAS  Google Scholar 

  192. Cole, S.T.; Eiglmeier, K.; Parkhill, J.; et al.: Massive gene decay in the leprosy bacillus. Nature, 409, 1007–1011 (2001)

    Article  PubMed  CAS  Google Scholar 

  193. Capela, D.; Barloy-Hubler, F.; Gouzy, J.; et al.: Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc. Natl. Acad. Sci. USA, 98, 9877–9882 (2001)

    Article  PubMed  CAS  Google Scholar 

  194. Cheng, H.P.; Walker, G.C.: Succinoglycan production by Rhizobium meliloti is regulated through the ExoS-ChvI two-component regulatory system. J. Bacteriol., 180, 20–26 (1998)

    PubMed  CAS  Google Scholar 

  195. Osteras, M.; Stanley, J.; Finan, T.M.; Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J. Bacteriol., 177, 5485–5494 (1995)

    PubMed  CAS  Google Scholar 

  196. Munson, G.P.; Lam, D.L.; Outten, F.W.; O’Halloran, T.V.: Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol., 182, 5864–5871 (2000)

    Article  PubMed  CAS  Google Scholar 

  197. Ingmer, H.; Miller, C.A.; Cohen, S.N.: Destabilized inheritance of pSC101 and other Escherichia coli plasmids by DpiA, a novel two-component system regulator. Mol. Microbiol., 29, 49–59 (1998)

    Article  PubMed  CAS  Google Scholar 

  198. Nolling, J.; Breton, G.; Omelchenko, M.V.; Makarova, K.S.; Zeng, Q.; Gibson, R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; Wolf, Y.I.; Tatusov, R.L.; Sabathe, F.; Doucette-Stamm, L.; Soucaille, P.; Daly, M.J.; Bennett, G.N.; Koonin, E.V.; Smith, D.R.: Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol., 183, 4823–4838 (2001)

    Article  PubMed  CAS  Google Scholar 

  199. Treuner-Lange, A.; Kuhn, A.; Durre, P.: The kdp system of Clostridium acetobutylicum: cloning, sequencing, and transcriptional regulation in response to potassium concentration. J. Bacteriol., 179, 4501–4512 (1997)

    PubMed  CAS  Google Scholar 

  200. Fraser, C.M.; Norris, S.J.; Weinstock, G.M.; et al.: Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science, 281, 375–388 (1998)

    Article  PubMed  CAS  Google Scholar 

  201. Greene, S.R.; Stamm, L.V.; Hardham, J.M.; Young, N.R.; Frye, J.G.: Identification sequences, and expression of Treponema pallidum chemotaxis genes. DNA Seq., 7, 267–284 (1997)

    Article  PubMed  CAS  Google Scholar 

  202. Mills, S.D.; Jasalavich, C.A.; Cooksey, D.A.: A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J. Bacteriol., 175, 1656–1664 (1993)

    PubMed  CAS  Google Scholar 

  203. Tseng, H.C.; Chen, C.W.: A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene. Mol. Microbiol., 5, 1187–1196 (1991)

    Article  PubMed  CAS  Google Scholar 

  204. Dean, C.R.; Poole, K.: Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Mol. Microbiol., 8, 1095–1103 (1993)

    Article  PubMed  CAS  Google Scholar 

  205. Pawlowski, K.; Klosse, U.; de Bruijn, F.J.: Characterization of a novel Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX, involved in nitrogen fixation and metabolism. Mol. Gen. Genet., 231, 124–138 (1991)

    Article  PubMed  CAS  Google Scholar 

  206. Ishizuka, H.; Horinouchi, S.; Kieser, H.M.; Hopwood, D.A.; Beppu, T.: A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J. Bacteriol., 174, 7585–7594 (1992)

    PubMed  CAS  Google Scholar 

  207. Canellakis, E.S.; Paterakis, A.A.; Huang, S.C.; Panagiotidis, C.A.; Kyriakidis, D.A.: Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli. Proc. Natl. Acad. Sci. USA, 90, 7129–7133 (1993)

    Article  PubMed  CAS  Google Scholar 

  208. Arthur, M.; Molinas, C.; Courvalin, P.: The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol., 174, 2582–2591 (1992)

    PubMed  CAS  Google Scholar 

  209. Arthur, M.; Molinas, C.; Depardieu, F.; Courvalin, P.: Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol., 175, 117–127 (1993)

    PubMed  CAS  Google Scholar 

  210. Charles, T.C.; Nester, E.W.: A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J. Bacteriol., 175, 6614–6625 (1993)

    PubMed  CAS  Google Scholar 

  211. Rasmussen, B.A.; Kovacs, E.: Cloning and identification of a two-component signal-transducing regulatory system from Bacteroides fragilis. Mol. Microbiol., 7, 765–776 (1993)

    Article  PubMed  CAS  Google Scholar 

  212. Oudega, B.; Koningstein, G.; Rodrigues, L.; de Sales Ramon, M.; Hilbert, H.; Dusterhoft, A.; Pohl, T.M.; Weitzenegger, T.: Analysis of the Bacillus subtilis genome: cloning and nucleotide sequence of a 62 kb region between 275 degrees (rrnB) and 284 degrees (pai). Microbiology, 143, 2769–2774 (1997)

    Article  PubMed  CAS  Google Scholar 

  213. Trach, K.A.; Hoch, J.A.: Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol., 8, 69–79 (1993)

    Article  PubMed  CAS  Google Scholar 

  214. Zhou, D.; Kalaitzis, P.; Mattoo, A.K.; Tucker, M.L.: The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues. Plant Mol. Biol., 30, 1331–1338 (1996)

    Article  PubMed  CAS  Google Scholar 

  215. Van der Lelie, D.; Schwuchow, T.; Schwidetzky, U.; Wuertz, S.; Baeyens, W.; Mergeay, M.; Nies, D.H.: Two-component regulatory system involved in transcriptional control of heavy-metal homoeostasis in Alcaligenes eutrophus. Mol. Microbiol., 23, 493–503 (1997)

    Article  PubMed  Google Scholar 

  216. Fraser, C.M.; Casjens, S.; Huang, W.M.; et al.: Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 390, 580–586 (1997)

    Article  PubMed  CAS  Google Scholar 

  217. Ge, Y.; Charon, N.W.: An unexpected flaA homolog is present and expressed in Borrelia burgdorferi. J. Bacteriol., 179, 552–556 (1997)

    PubMed  CAS  Google Scholar 

  218. Trueba, G.A.; Old, I.G.; Saint Girons, I.; Johnson, R.C.: A cheA cheW operon in Borrelia burgdorferi, the agent of Lyme disease. Res. Microbiol., 148, 191–200 (1997)

    Article  PubMed  CAS  Google Scholar 

  219. Fabret, C.; Hoch, J.A.: A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J. Bacteriol., 180, 6375–6383 (1998)

    PubMed  CAS  Google Scholar 

  220. Fukuchi, K.; Kasahara, Y.; Asai, K.; Kobayashi, K.; Moriya, S.; Ogasawara, N.: The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology, 146, 1573–1583 (2000)

    PubMed  CAS  Google Scholar 

  221. Dons, L.; Olsen, J.E.; Rasmussen, O.F.: Characterization of two putative Listeria monocytogenes genes encoding polypeptides homologous to the sensor protein CheA and the response regulator CheY of chemotaxis. DNA Seq., 4, 301–311 (1994)

    Article  PubMed  CAS  Google Scholar 

  222. Glaser, P.; Frangeul, L.; Buchrieser, C.; et al.: Comparative genomics of Listeria species. Science, 294, 849–852 (2001)

    PubMed  CAS  Google Scholar 

  223. Via, L.E.; Curcic, R.; Mudd, M.H.; Dhandayuthapani, S.; Ulmer, R.J.; Deretic, V.: Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J. Bacteriol., 178, 3314–3321 (1996)

    PubMed  CAS  Google Scholar 

  224. Greck, M.; Platzer, J.; Sourjik, V.; Schmitt, R.: Analysis of a chemotaxis operon in Rhizobium meliloti. Mol. Microbiol., 15, 989–1000 (1995)

    Article  PubMed  CAS  Google Scholar 

  225. Szeto, W.W.; Nixon, B.T.; Ronson, C.W.; Ausubel, F.M.: Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J. Bacteriol., 169, 1423–1432 (1987)

    PubMed  CAS  Google Scholar 

  226. Eraso, J.M.; Kaplan, S.: Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J. Bacteriol., 177, 2695–2706 (1995)

    PubMed  CAS  Google Scholar 

  227. Ouchane, S.; Kaplan, S.: Topological analysis of the membrane-localized redox-responsive sensor kinase PrrB from Rhodobacter sphaeroides 2.4.1. J. Biol. Chem., 274, 17290–17296 (1999)

    Article  PubMed  CAS  Google Scholar 

  228. Qian, Y.; Tabita, F.R.: A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. J. Bacteriol., 178, 12–18 (1996)

    PubMed  CAS  Google Scholar 

  229. Ward, M.J.; Bell, A.W.; Hamblin, P.A.; Packer, H.L.; Armitage, J.P.: Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. Mol. Microbiol., 17, 357–366 (1995)

    Article  PubMed  CAS  Google Scholar 

  230. Guenzi, E.; Gasc, A.M.; Sicard, M.A.; Hakenbeck, R.: A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol., 12, 505–515 (1994)

    Article  PubMed  CAS  Google Scholar 

  231. Hoskins, J.; Alborn, W.E., Jr.; Arnold, J.; Blaszczak, L.C.; et al.: Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol., 183, 5709–5717 (2001)

    Article  PubMed  CAS  Google Scholar 

  232. Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; et al.: Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science, 293, 498–506 (2001)

    Article  PubMed  CAS  Google Scholar 

  233. Kaneko, T.; Tanaka, A.; Sato, S.; Kotani, H.; Sazuka, T.; Miyajima, N.; Sugiura, M.; Tabata, S.: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res., 2; 153–166, 191–158 (1995)

    Article  CAS  Google Scholar 

  234. Park, C.M.; Shim, J.Y.; Yang, S.S.; Kang, J.G.; Kim, J.I.; Luka, Z.; Song, P.S.: Chromophore-apoprotein interactions in Synechocystis sp. PCC6803 phytochrome Cph1. Biochemistry, 39, 6349–6356 (2000)

    Article  PubMed  CAS  Google Scholar 

  235. Yeh, K.C.; Wu, S.H.; Murphy, J.T.; Lagarias, J.C.: A cyanobacterial phytochrome two-component light sensory system. Science, 277, 1505–1508 (1997)

    Article  PubMed  CAS  Google Scholar 

  236. Bilwes, A.M.; Alex, L.A.; Crane, B.R.; Simon, M.I.: Structure of CheA, a signal-transducing histidine kinase. Cell, 96, 131–141 (1999)

    Article  PubMed  CAS  Google Scholar 

  237. Nelson, K.E.; Clayton, R.A.; Gill, S.R.; Gwinn, M.L.; et al.: Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature, 399, 323–329 (1999)

    Article  PubMed  CAS  Google Scholar 

  238. Swanson, R.V.; Sanna, M.G.; Simon, M.I.: Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol., 178, 484–489 (1996)

    PubMed  CAS  Google Scholar 

  239. Takami, H.; Takaki, Y.; Uchiyama, I.: Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res., 30, 3927–3935 (2002)

    Article  PubMed  CAS  Google Scholar 

  240. Deppenmeier, U.; Johann, A.; Hartsch, T.; Merkl, R.; et al.: The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol., 4, 453–461 (2002)

    PubMed  CAS  Google Scholar 

  241. Kapatral, V.; Anderson, I.; Ivanova, N.; et al.: Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J. Bacteriol., 184, 2005–2018 (2002)

    Article  PubMed  CAS  Google Scholar 

  242. DelVecchio, V.G.; Kapatral, V.; Redkar, R.J.; et al.: The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA, 99, 443–448 (2002)

    Article  PubMed  CAS  Google Scholar 

  243. Salanoubat, M.; Genin, S.; Artiguenave, F.; Gouzy, J.; et al.: Genome sequence of the plant pathogen Ralstonia solanacearum. Nature, 415, 497–502 (2002)

    Article  PubMed  CAS  Google Scholar 

  244. Deng, W.; Burland, V.; Plunkett, G.; Boutin, A.; et al.: Genome sequence of Yersinia pestis KIM. J. Bacteriol., 202, 4601–4611 (2002)

    Article  CAS  Google Scholar 

  245. Parkhill, J.; Wren, B.W.; Thomson, N.R.; et al.: Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 413, 523–527 (2001)

    Article  PubMed  CAS  Google Scholar 

  246. Reichmann, P.; Hakenbeck, R.: Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. FEMS Microbiol. Lett., 190, 231–236 (2000)

    Article  PubMed  CAS  Google Scholar 

  247. Altier, C.; Suyemoto, M.; Ruiz, A.I.; Burnham, K.D.; Maurer, R.: Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol. Microbiol., 35, 635–646 (2000)

    Article  PubMed  CAS  Google Scholar 

  248. Parkhill, J.; Wren, B.W.; Mungall, K.; et al.: The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 403, 665–668 (2000)

    Article  PubMed  CAS  Google Scholar 

  249. Takami, H.; Takaki, Y.; Nakasone, K.; Sakiyama, T.; Maeno, G.; Sasaki, R.; Hirama, C.; Fuji, F.; Masui, N.: Genetic analysis of the chromosome of alkaliphilic Bacillus halodurans C-125. Extremophiles, 3, 227–233 (1999)

    Article  PubMed  CAS  Google Scholar 

  250. Nierman, W.C.; Feldblyum, T.V.; Laub, M.T.; et al.: Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA, 98, 4136–4141 (2001)

    Article  PubMed  CAS  Google Scholar 

  251. Wu, J.; Ohta, N.; Zhao, J.L.; Newton, A.: A novel bacterial tyrosine kinase essential for cell division and differentiation. Proc. Natl. Acad. Sci. USA, 96, 13068–13073 (1999)

    Article  PubMed  CAS  Google Scholar 

  252. Davis, S.J.; Vener, A.V.; Vierstra, R.D.: Bacteriophytochromes: phytochrome-like-photoreceptors from nonphotosynthetic eubacteria. Science, 286, 2517–2520 (1999)

    Article  PubMed  CAS  Google Scholar 

  253. White, O.; Eisen, J.A.; Heidelberg, J.F.; Hickey, E.K.; et al.: Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science, 286, 1571–1577 (1999)

    Article  PubMed  CAS  Google Scholar 

  254. Yamasaki, S.; Fujii, N.; Takahashi, H.: The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol., 41, 608–616 (2000)

    PubMed  CAS  Google Scholar 

  255. Dervinis, C.; Clark, D.G.; Barrett, J.E.; Nell, T.A.: Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during flower petal abscission in geranium (Pelargonium x hortorum L.H. Bailey). Plant Mol. Biol., 42, 847–856 (2000)

    Article  PubMed  CAS  Google Scholar 

  256. Mita, S.; Kawamura, S.; Yamawaki K.; Nakamura, K.; Hyodo, H.: Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit (Passiflora edulis Sims). Plant Cell Physiol., 39, 1209–1217 (1998)

    PubMed  CAS  Google Scholar 

  257. Perna, N.T.; Plunkett, G.; Burland, V.; Mau, B.; Glasner, J.D.; et al.: Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 409, 529–533 (2001)

    Article  PubMed  CAS  Google Scholar 

  258. Parkhill, J.; Dougan, G.; James, K.D.; Thomson, N.R.; Pickard, D.; Wain, J.; et al.: Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 413, 848–852 (2001)

    Article  PubMed  CAS  Google Scholar 

  259. McClelland, M.; Sanderson, K.E.; Spieth, J.; Clifton, S.W.; Latreille, P.; et al. Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature, 413, 852–856 (2001)

    Article  PubMed  CAS  Google Scholar 

  260. Hayashi, T.; Makino, K.; Ohnishi, M.; Kurokawa, K.; Ishii, K.; et al.: Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res., 8, 11–22 (2001)

    Article  PubMed  CAS  Google Scholar 

  261. Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; et al.: The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1474 (1997)

    Article  PubMed  CAS  Google Scholar 

  262. Oshima, T.; Aiba, H.; Baba, T.; Fujita, K.; Hayashi, K.; Honjo, A.; et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7–28.0 min region on the linkage map. DNA Res., 3, 137–155 (1996)

    Article  PubMed  CAS  Google Scholar 

  263. Itoh, T.; Aiba, H.; Baba, T.; Hayashi, K.; Inada, T.; Isono, K.; et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map. DNA Res., 3, 379–392 (1996)

    Article  PubMed  CAS  Google Scholar 

  264. Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393, 537–544 (1998)

    Article  PubMed  CAS  Google Scholar 

  265. Kaneko, T.; Nakamura, Y.; Wolk, C.P.; Kuritz, T.; et al.: Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res., 8; 205–213 227–253 (2001)

    Article  PubMed  CAS  Google Scholar 

  266. Bentley, S.D.; Chater, K.F.; Cerdeno-Tarraga, A.M.; et al.: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147 (2002)

    Article  PubMed  Google Scholar 

  267. Martinez-Canamero, M.; Ortiz-Codorniu, C.; Extremera, A.L.; Munoz-Dorado, J.; Arias, J.M.: phoR1, a gene encoding a new histidine protein kinase in Myxococcus xanthus. Antonie Leeuwenhoek, 83, 361–368 (2003)

    Article  PubMed  CAS  Google Scholar 

  268. Khorchid, A.; Inouye, M.; Ikura, M.; Structural characterization of Escherichia coli sensor histidine kinase EnvZ: the periplasmic C-terminal core domain is critical for homodimerization. Biochem. J., 385, 255–264 (2005)

    Article  PubMed  CAS  Google Scholar 

  269. Motoyama, T.; Ohira, T.; Kadokura, K.; Ichiishi, A.; Fujimura, M.; Yamaguchi, I.; Kudo, T.: An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr. Genet., 47, 298–306 (2005)

    Article  PubMed  CAS  Google Scholar 

  270. Qin, L.; Cai, S.; Zhu, Y.; Inouye, M.: Cysteine-scanning analysis of the dimerization domain of EnvZ, an osmosensing histidine kinase. J. Bacteriol., 185, 3429–3435 (2003)

    Article  PubMed  CAS  Google Scholar 

  271. Ohta, N.; Newton, A.: The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J. Bacteriol., 185, 4424–4431 (2003)

    Article  PubMed  CAS  Google Scholar 

  272. Brunsing, R.L.; La Clair, C.; Tang, S.; Chiang, C.; Hancock, L.E.; Perego, M.; Hoch, J.A.: Characterization of sporulation histidine kinases of Bacillus anthracis. J. Bacteriol., 187, 6972–6981 (2005)

    Article  PubMed  CAS  Google Scholar 

  273. Gilmour, R.; Foster, J.E.; Sheng, Q.; McClain, J.R.; Riley, A.; Sun, P.-M.; Ng, W.-L.; Yan, D.; Nicas, T.I.; Henry, K.; Winkler, M.E.: New class of competitive inhibitor of bacterial histidine kinases. J. Bacteriol., 187, 8196–8200 (2005)

    Article  PubMed  CAS  Google Scholar 

  274. Mutsuda, M.; Michel, K.P.; Zhang, X.; Montgomery, B.L.; Golden, S.S.: Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J. Biol. Chem., 278, 19102–19110 (2003)

    Article  PubMed  CAS  Google Scholar 

  275. Paithoonrangsarid, K.; Shoumskaya, M.A.; Kanesaki Y.; Satoh, S.; Tabata, S.; Los, D.A.; Zinchenko, V.V.; Hayashi, H.; Tanticharoen, M.; Suzuki, I.; Murata, N.: Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J. Biol. Chem., 279, 53078–53086 (2004)

    Article  PubMed  CAS  Google Scholar 

  276. Cai, S.J.; Khorchid, A.; Ikura, M.; Inouye, M.: Probing catalytically essential domain orientation in histidine kinase EnvZ by targeted disulfide crosslinking. J. Mol. Biol., 328, 409–418 (2003)

    Article  PubMed  CAS  Google Scholar 

  277. Vakonakis, I.; Klewer, D.A.; Williams, S.B.; Golden, S.S.; LiWang, A.C.: Structure of the N-terminal domain of the circadian clock-associated histidine kinase SasA. J. Mol. Biol., 342, 9–17 (2004)

    Article  PubMed  CAS  Google Scholar 

  278. Ning, D.; Xu, X.: alrO117, a two-component histidine kinase gene, is involved in heterocyst development in Anabaena sp. PCC 7120. Microbiology, 150, 447–453 (2004)

    Article  PubMed  CAS  Google Scholar 

  279. Kamps, A.; Achebach, S.; Fedtke, I.; Unden, G.; Goetz, F.: Staphylococcal NreB: An O2-sensing histidine protein kinase with an O2-labile iron-sulphur cluster of the FNR type. Mol. Microbiol., 52, 713–723 (2004)

    Article  PubMed  CAS  Google Scholar 

  280. Rasmussen, A.A.; Porter, S.L.; Armitage, J.P.; Sogaard-Andersen, L.: Coupling of multicellular morphogenesis and cellular differentiation by an unusual hybrid histidine protein kinase in Myxococcus xanthus. Mol. Microbiol., 56, 1358–1372 (2005)

    Article  PubMed  CAS  Google Scholar 

  281. Zhang, Z.G.; Zhou, H.L.; Chen, T.; Gong, Y.; Cao, W.H.; Wang, Y.J.; Zhang, J.S.; Chen, S.Y.: Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol., 136, 2971–2981 (2004)

    Article  PubMed  CAS  Google Scholar 

  282. Suzuki, I.; Kanesaki, Y.; Hayashi, H.; Hall, J.J.; Simon, W.J.; Slabas, A.R.; Murata, N.: The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol., 138, 1409–1421 (2005)

    Article  PubMed  CAS  Google Scholar 

  283. Karniol, B.; Vierstra, R.D.: The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties. Proc. Natl. Acad. Sci. USA, 100, 2807–2812 (2003)

    Article  PubMed  CAS  Google Scholar 

  284. Wang, W.; Hall, A.E.; O’Malley, R.; Bleecker, A.B.: Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc. Natl. Acad. Sci. USA, 100, 352–357 (2003)

    Article  PubMed  CAS  Google Scholar 

  285. Marin, K.; Suzuki, I.; Yamaguchi, K.; Ribbeck, K.; Yamamoto, H.; Kanesaki, Y.; Hagemann, M.; Murata, N.: Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA, 100, 9061–9066 (2003)

    Article  PubMed  CAS  Google Scholar 

  286. Boyd, J.M.: Localization of the histidine kinase PilS to the poles of Pseudomonas aeruginosa and identification of a localization domain. Mol. Microbiol., 36, 153–162 (2000)

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Histidine kinase. In: Schomburg, D., Schomburg, I., Chang, A. (eds) Springer Handbook of Enzymes. Springer Handbook of Enzymes, vol S4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85701-3_20

Download citation

Publish with us

Policies and ethics