Skip to main content

On the Use of Preferential Weights in Interactive Reference Point Based Methods

  • Conference paper
Multiobjective Programming and Goal Programming

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 618))

Abstract

We introduce a new way of utilizing preference information specified by the decision maker in interactive reference point based methods. A reference point consists of aspiration levels for each objective function. We take the desires of the decision maker into account more closely when projecting the reference point to become nondominated. In this way we can support the decision maker in finding the most satisfactory solutions faster. In practice, we adjust the weights in the achievement scalarizing function that projects the reference point. We demonstrate our idea with an example and we summarize results of computational tests that support the efficiency of the idea proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benayoun R, de Montgolfier J, Tergny J, Laritchev O (1971) Linear programming with multiple objective functions: step method (STEM). Math Prog 1:366–375

    Article  Google Scholar 

  2. Buchanan JT (1997) A naïve approach for solving MCDM problems: the GUESS method. J Oper Res Soc 48:202–206

    Article  Google Scholar 

  3. Jaszkiewicz A, Slowiński R (1999) The ‘light beam search’ approach—an overview of methodology and applications. Eur J Oper Res 113:300–314

    Article  Google Scholar 

  4. Korhonen P, Laakso J (1986) A visual interactive method for solving the multiple criteria problem. Eur J Oper Res 24:277–287

    Article  Google Scholar 

  5. Luque M, Miettinen K, Eskelinen P, Ruiz F (2009) Incorporating Preference information in interactive reference point methods for multiobjective optimization. Omega 37: 450–462

    Article  Google Scholar 

  6. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Boston

    Google Scholar 

  7. Miettinen K, Lotov AV, Kamenev GK, Berezkin VE (2003) Integration of two multiobjective optimization methods for nonlinear problems. Optim Meth Soft 18:63–80

    Article  Google Scholar 

  8. Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable mul-tiobjective optimization: NIMBUS. Optimization 34:231–246

    Article  Google Scholar 

  9. Miettinen K, Mäkelä MM (1999) Comparative evaluation of some interactive reference point based methods for multi-objective optimisation. J Oper Res Soc 50:949–959

    Article  Google Scholar 

  10. Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectrum 24:193–213

    Article  Google Scholar 

  11. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170:909–922

    Article  Google Scholar 

  12. Miettinen K, Mäkelä MM, Kaario K (2006) Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur J Oper Res 175:931–947

    Article  Google Scholar 

  13. Nakayama H, Sawaragi Y (1984) Satisficing Trade-off method for multiobjective programming. In: Grauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Berlin, pp 113–122

    Google Scholar 

  14. Steuer RE (1986) Multiple criteria optimization: theory, computation, and application. Wiley, New York

    Google Scholar 

  15. Wierzbicki AP (1982) A Mathematical basis for satisficing decision making. Math Modell 3:391–405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miettinen, K., Eskelinen, P., Luque, M., Ruiz, F. (2009). On the Use of Preferential Weights in Interactive Reference Point Based Methods. In: Barichard, V., Ehrgott, M., Gandibleux, X., T'Kindt, V. (eds) Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol 618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85646-7_20

Download citation

Publish with us

Policies and ethics