Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 29))

  • 1172 Accesses

Abstract

In this chapter, an introduction is given on the development of welding handicraft, manufacturing technology and key technologies of welding automation and intelligentization. Recent twenty years have seen great development of welding robot in modern manufacturing industry, where arc welding is one of the mainstream technology. A large number of researches show that automatic control of the welding process requires not only good performance of the equipment, but also technologies, namely sensing, modeling and controlling of the welding process. None of the technologies is neglectable for welding process control, in which sensing is to monitor the process and extract characteristic information of the welding process; modeling is to identify the process based on acquired information; and controlling is to regulate the welding process based on the established models. The main part in controlling is to design controller for multi-variables coupled, nonlinear and time-varying situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Kannatey-Asibu. Milestone developments in welding and joining processes. ASME Journal of Manufacturing Science and Engineering. 1997, 119(11):801–810

    Article  Google Scholar 

  2. P. Drews, G. Starke. Welding in the century of information technology. Welding in the World. 1994, 34(1):1–20

    Google Scholar 

  3. J.L. Pan. A survey on 21th century welding science researches, Beijing :Mechanical Industry Press, Proceedings on 9th Chinese Conference on Welding (in Chinese), 1999, (1):D-001-D-017

    Google Scholar 

  4. T.H. Song, M.X. Li. Development of advanced manufacturing technologies and welding in the future, Beijing :Mechanical Industry Press, Proceedings on 8th Chinese Conference on Welding (in Chinese), 1997, (1):17–27

    Google Scholar 

  5. T.J. Tarn, S.B. Chen, C.J. Chou. Robotic Welding, Intelligence and Automation, Springer Verlag Berlin Heidelberg, Mar., 2004

    Google Scholar 

  6. T.J. Tarn, S.B. Chen, C.J. Chou. Robotic Welding, Intelligence and Automation, Springer Verlag Berlin Heidelberg, Mar., 2007

    Google Scholar 

  7. S.B. Chen, L. Wu. A survey on intelligentized welding technologies, Harbin: Heilongjiang People Press, Proceedings on 10th Chinese Conference on Welding (in Chinese), 2001, (1):84–96

    Google Scholar 

  8. C. Shanben, Q. Tao, L. Tao, et al. On intelligentized technologies for modern welding manufacturing, Chinese Journal of Mechanical Engineering, 2003, 16(4):367–370

    Google Scholar 

  9. L. Wu, S.B. Chen. Intelligentized Welding Technology, National Defence Industry Press, Beijing, 2000

    Google Scholar 

  10. S.B. Chen. Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part1 – Band-on-plate Welding. Welding Journal, 2000, 79(6):151s–163s

    Google Scholar 

  11. S.B. Chen. Intelligent methodology for sensing, modeling and control of pulsed GTAW: Part2 – Butt Joint Welding. Welding Journal. 2000, 79(6):164s–174s

    Google Scholar 

  12. P. Ward. Improving productivity with robotic welding. Welding Journal. 2001, 80(8): 52–54

    Google Scholar 

  13. M. Ushio, W. Mao, Sensors for arc welding: Advantages and limitations. Transactions of JWRI. 1994, 23(2):135–141

    Google Scholar 

  14. H. Nomura. Sensor and Control System in Arc Welding. Chapman & Hall. 1994, 3–5

    Google Scholar 

  15. L. Masumoto, T. Araya, A. Iochi, H. Normura. Development and application of sensors and sensor system for arc welding. Journal of Japan Welding Society. 1983, 52(4):39–47

    Google Scholar 

  16. D.E. Hardt. Ultrasonic measurement of weld penetration. Welding Journal. 1984, 63(9):273s–285s

    Google Scholar 

  17. R. Fenn. Ultrasonic monitoring and control during arc welding. Welding Journal. 1985, 64(9):18–24

    Google Scholar 

  18. N.M. Carlson, J.A. Johnson. Ultrasonic sensing of weld pool penetration. Welding Journal. 1988, 67(11):239s–246s

    Google Scholar 

  19. L. Wu, DX. Dong, DH. Chen. Detection and analysis of welding penetration signal in stationary TIG arc welding-An preliminary study of detection of welding penetration. Transactions of The China Welding Institution. 1986, 7(2):64–71

    Google Scholar 

  20. Q.L. Wang, J.H. Zhang, C.L. Yang. Detection of weld full penetration signals of a traveling arc in GTAW process. Transactions of the China Welding Institution. 1992, 11(3):175–179

    MathSciNet  Google Scholar 

  21. R.J. Renwick, R.W. Richardson. Experimental investigation of GTA weld pool oscillations. Welding Journal. 1983, 62(2):29s–35s

    Google Scholar 

  22. S.J. Salter, R.T. Deam. A practical front face penetration control system for TIG welding. Proceedings of an International Conference on Trends in Welding Research. Gatlinburg, Tennessee, USA. 1986, 381–392

    Google Scholar 

  23. H. Maruo, Y. Hirata. Natural frequency and oscillation modes of weld pools. 1st Report: Weld pool oscillation in full penetration welding of thin plate. Welding International. 1993, 7(8):614–619

    Google Scholar 

  24. L.C. Yang. Real-Time Control of full penetration of steel sheet TIG weld pool with arc sensor based on welding pool resonance, [1.Doctorial dissertation], Harbin Institute of Technology, 1991

    Google Scholar 

  25. S.I. Rokhlin, A.C. Guu. A study of arc force, pool depression and weld penetration during tungsten arc welding. Welding Journal. 1993,72(8):381s–390s

    Google Scholar 

  26. P.J. Li, Q.L. Wang. The development of the arc light sensing method in GTAW process. Proceedings of the 78th American Welding society Annual Meeting. Los Angeles, USA, 1997:112–120

    Google Scholar 

  27. J.W. Kin and S.J. Na. A Study on an arc sensor for gas metal arc welding of horizonal fillets. Welding Journal. 1991,70(8):216s–221s

    Google Scholar 

  28. Y.L. Song. Some features of welding arc radiation. China Welding. 1996, 5(2):96–101

    Google Scholar 

  29. Q.L. Wang, P.J. Li, M. Naka. The welding arc spectrum and the improved arc light information for welding process control. High Temperature Physicals. 1996, 22(6):313–320

    Google Scholar 

  30. J.P. Li. Fundamental research on arc light sensing technology during welding process, [1.Doctorial dissertation], Harbin Institute of Technology, 1997

    Google Scholar 

  31. H.C. Wikle. Infrared sensing techniques for penetration depth control of the submerged arc welding process. Journal of Materials Processing Technology. 2001, 113(6):228–233

    Article  Google Scholar 

  32. S. Nagarajan, W.H. Chen, B.A. Chin. Infrared sensing for adaptive arc welding. Welding Journal. 1989, 68(11):462s–466s

    Google Scholar 

  33. S. Nagarajan, B.A. Chin, W. Chen. Control of the welding process using infrared sensors. IEEE Transactions on Robotics and Automation. 1992, 8(1):86–93

    Article  Google Scholar 

  34. Y. Koiono. Control System of Reverse Side Bead Width Surface Temperature Monitoring of TIG Weld. Quarterly Journal of the Japan Welding Society. 1986,4(2):58∼67

    Google Scholar 

  35. J.B. Song, D.E. Hardt. Closed-loop control of weld pool depth using a thermally based depth estimate. Welding Journal. 1993, 72(10):471s–478s

    Google Scholar 

  36. C.C. Doumanidis, D.E. Hardt. Simultaneous in-process control of heat affected zone and cooling rate during arc welding. Welding Journal. 1990, 69(3):186s–195s

    Google Scholar 

  37. A.C. Guu, S.I. Rokhlin. Computerized radiographic weld penetration control with feedback on weld pool depression. Materials Evaluation. 1989, 47(10):1204–1210

    Google Scholar 

  38. A.C. Guu, S.I. Rokhlin. Arc weld process control using radiographic sensing[J]. Materials Evaluation. 1992, 50(11):1344–1348

    Google Scholar 

  39. M. Futamata. Application of arc sound for detection of welding process. Quarterly Journal of the Japan Welding Society. 1983, 1(1):11–16

    Google Scholar 

  40. J.A. Johnson, N.M. Carlson, D.E. Clark. Process control of gas metal arc weld: Sensing of metal transfer mode. Welding Journal. 1991, 70(4): 91s–96s

    Google Scholar 

  41. M. Kutsua, M. Abraham. Metal transfer and spatter loss in double gas shielded metal arc welding using flux-cored wire. Transactions of the Japan Welding Society. 1989, 20(1):2–15

    Google Scholar 

  42. J.A. Johnson, N.M. Carlson, H.B. Smartt. Detection of metal transfer mode in GMAW. Proceedings of the 2nd International Conference on Trends in Welding Research. Gatlinburg, Tennessee, USA. 1989, 37–38

    Google Scholar 

  43. R.J. Beatlie, S.K. Cheng, P.S. Logue. The use of vision sensors in multi-pass welding applications. Welding Journal. 1988, 67(11):28–33

    Google Scholar 

  44. C.G. Morgan, J.S. Bromley, P.G. Davey. Visual guidance techniques for Robot arc welding. Proceeding of 3rd International Conference on Robot Vision and Sensory Controls, 1983, 615–619

    Google Scholar 

  45. Y.M. Zhang. Modern control analysis and design of welding process, Harbin Institute of Technology Press, Harbin, 1990, 72–76

    Google Scholar 

  46. Y.M. Zhang, L. Wu. Determination of top supervision parameters for state of full penetration in TIG welding, Transactions of The China Welding Institution. 1991, 12(1):39–45

    Google Scholar 

  47. Y.M. Zhang, R. Kovacevic, L. Wu. Closed-loop control of weld penetration using front-face vision sensing. Journal of Systems and Control Engineering. 1993, 207(3):27–34

    Google Scholar 

  48. J.E. Agapakis, J. Bolstad. Vision sensing and processing system for monitoring and control of welding and other high luminosity processes. International Robots & Vision Automation Conference, 1991, 23–29

    Google Scholar 

  49. S. Nakata, J. Huang, Y. Tsuruha. Visual sensing system for in-process control of arc welding process. Welding International. 1988, 2(12):1086–1090

    Google Scholar 

  50. T. Hoffman. Real-time imaging for process control. Advanced Materials & Processes. 1991, 140(9):37–43

    Google Scholar 

  51. S.B. Chen, J. Wu, “A Survey on Intelligentized Technologies for Visual Information Acquirement, modeling and Control of Arc Welding Pool Dynamics”, Proceedings on the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON’ 07), Taipei, Taiwan, R.O.C., Nov. 5–8, 2007, IEEE IECON07, 1-4244-0783-4/07, pp. 781–785

    Google Scholar 

  52. S.B. Chen. “The Status and Development of Intelligent Technology for Welding in China,” (Invited report) The First International Conference on Mechanical Engineering (ICME’2000), Shanghai, China, Nov., 2000. (The conference on Materials, plenary report)

    Google Scholar 

  53. Y.M. Zhang, L. Wu, B. Walcott, D.H. Chen. Determining joint penetration in GTAW with vision sensing of weld face geometry. Welding Journal, 1993, 72(10):463–469

    Google Scholar 

  54. Y.M. Zhang, R. Kovacevic, L. Wu. Sensitivity of front-face weld geometry in representing the full penetration. Proc. Instn. Mech. Engrs, Part B: Journal of Engineering Manufacture. 1992, 206:191–197

    Google Scholar 

  55. Y.M. Zhang, R. Kovacevic, L. Wu. Dynamic analysis and identification of gas tungsten arc welding process for weld penetration control. ASME Journal of Engineering for Industry. 1996, 118:123–136

    Article  Google Scholar 

  56. E.W. Kim, C. Allemand, T.W. Eagar. Visible light emissions during gas tungsten arc welding and its application to weld image improvement. Welding Journal. 1987, 66(12):369s–377s

    Google Scholar 

  57. Y.L. Song. Sensing technology of spectral image of welding zone in arc welding. Transactions of the China Welding Institution. 1992, 13(2):127–132

    Google Scholar 

  58. Y.L. Song. Some phenomena and features of the component distributions in welding arc. China Welding. 1995, 4(2):65–69

    Google Scholar 

  59. J.E. Agapakis, J. Bolstad. Vision sensing and processing system for monitoring and control of welding and other high luminosity processes. International Robots & Vision Automation Conference, 1991, 23–29

    Google Scholar 

  60. R.W. Richardson, D.A. Gutow. Coaxial arc weld pool viewing for process monitoring and Control. Welding Journal. 1984, 63(3):43–50

    Google Scholar 

  61. D. Brzakovic, D.T. Khani. Weld pool edge detection for automated control of welding. IEEE Transactions on Robotics and Automation. 1991, 7(3):397–403

    Article  Google Scholar 

  62. K.A. Pietrzak, S.M. Packer. Vision-based weld pool width control. ASME Journal of Engineering for Industry. 1994, 116(2):86–92

    Article  Google Scholar 

  63. Y.C. Liu. Experimental measurement of the change process for impulse TIG welding pool width. [1.Master Thesis], Harbin Institute of Technology, 1994

    Google Scholar 

  64. Y.J. Lou, M. Dai, S.B. Chen. Capturing simultaneous images of weld pool in a frame from two directions. Robot. 1997, 19, Sup.(1): 59–63

    Google Scholar 

  65. Y.J. Lou. Intelligent control of dynamics in pulsed GTAW process by weld pool image sensing, [1.1.1.1.Phd. dissertation] (in Chinese). Harbin: Harbin Institute of Technology, 1998

    Google Scholar 

  66. J.J. Wang, T. Lin, S.B. Chen. Obtaining of weld pool vision information during aluminum alloy TIG welding. International Journal of Advanced manufacturing technology. 2005, 26:219–227

    Article  Google Scholar 

  67. J.J. Wang, T. Lin, S.B. Chen, W. Wang, Research for the method of image acquisition of the molten pool in the TIG welding of aluminum alloy, China Welding (English Edition), Vol. 13, n 2, November, 2004, pp. 115–118

    Google Scholar 

  68. J.J. Wang. Visual information acquisition and adaptive control of weld pool dynamics of Aluminum alloy during pulsed TIG welding. PhD dissertation, Shanghai Jiao Tong University, 2003

    Google Scholar 

  69. C.J. Fan, S.B. Chen, T. Lin. Visual sensing and image processing in aluminum alloy welding, Lecture Notes in Control and Information Sciences, LNCIS 362, pp. 275–280, 2007(ISTP)

    Google Scholar 

  70. S.B. Chen. “Visual Information Acquirement and Real-time Control Methodologies for Weld Pool Dynamics during Pulsed GTAW,” Tthe invited paper of the THERMEC’2006, Journal Materials Science Forum vols. 539–543 in March 2007

    Google Scholar 

  71. S.B. Chen, D.B. Zhao, Y.J. Lou, L. Wu. Computer vision sensing and intelligent control of welding pool dynamics. Series Lecture Notes in Control and Information Sciences. 2004, 299:25–55, (SCI)

    Google Scholar 

  72. Y.J. Lou, S.B. Chen, L. Wu. Monitoring of Weld Joint Penetration Based on Sensing Double-side Vision Image of Weld Pool. Journal of Harbin Institute of Technology. 1999, 6(3):26–31

    Google Scholar 

  73. R. Kovacevic, Y.M. Zhang, S. Ruan. Sensing and control of weld pool geometry for automated GTA welding. ASME Journal of Engineering for Industry. 1995, 117:210–222

    Article  Google Scholar 

  74. R. Kovacevic, Y.M. Zhang, L. Li. Monitoring of weld penetration based on weld pool geometrical appearance. Welding Journal. 1996, 75(10):317s–328s

    Google Scholar 

  75. D.H. Chen, L. Wu, Q.H. Xu. Study on a new measuring method of temperature distribution on weld with microcomputer. 1981, 12:1–11

    Google Scholar 

  76. R. Kovacevic, Y.M. Zhang. Real-time image processing for monitoring of free weld pool surface. Journal of Manufacturing Science and Engineering. 1997, 119(5):161–169

    Article  Google Scholar 

  77. S.K. Pal. Automatic gray level thresholding through index of fuzziness and entropy. Pattern Recognition. 1983, 1(3):141–146

    Article  Google Scholar 

  78. K.P. Horn. Height and gradient from shading. International Journal of Computer Vision. 1990, 5(1):37–75

    Article  Google Scholar 

  79. K.M. Lee, C.J. Kuo. Shape from shading with a linear triangular element surface model. IEEE Transactions on Pattern Analysis and Macine Intelligence. 1993, 15(8):815–822

    Article  Google Scholar 

  80. K.M. Lee, C.J. Kuo. Shape from shading with a generalized reflectance map model. Computer Vision and Image Understanding. 1997, 67(2):143–160

    Article  Google Scholar 

  81. K.M. Lee, C.J. Kuo. Shape from shading with perspective projection. Computer Vision Graphics Image Process. 1994, 59(2):202–212

    Google Scholar 

  82. R. Kimmel, A.M. Bruckstein, Global shape from shading. Computer Vision and Image Understanding. 1995, 62(3):360–369

    Google Scholar 

  83. J.H. Sheng. 3D image processing system based on Shape Reconstruction. Pattern Recognition and Artificial Intelligence. 1991, 4(4):46–52

    Google Scholar 

  84. D.B. Zhao, S.B. Chen, L. Wu. Research on the application of the 3-D shape from a single image. Optical Technique. 2000, 23(2):147–152

    MathSciNet  Google Scholar 

  85. D.B. Zhao, S.B. Chen, L. Wu. Analysis and realization of the calculus of height from a single image. Chinese Journal of Computers. 2001, 27(4):367–369

    Google Scholar 

  86. D.B. Zhao, S.B. Chen. Shape parameter definition and image processing of the weld pool during pulsed GTAW with wire filler. Transactions of the China Welding Institution. 2001, 19(2):5–8

    Google Scholar 

  87. L.P. Li, S.B. Chen, T. Lin. The light intensity analysis of passive visual sensing system in GTAW. The International Journal of Advanced Manufacturing Technology. 2003, 27:106–111, 2005

    Google Scholar 

  88. Q.Y. Du. Extraction and intelligent control of 3D dynamic weld pool shape information of pulsed GTAW with wire filler [1.Doctor thesis] Shanghai Jiaotong University, 2005

    Google Scholar 

  89. Q.Y. Du. S.B. Chen, T. Lin. Research on an algorithm of shape from shading. Journal of Shanghai Jiaotong University (English Edition), 2005, E-10(1):86–90

    Google Scholar 

  90. Z. Gen. Real-time control of full penetration of Aluminium alloy TIG weld pool with arc sensor based on welding pool resonance, [Doctorial dissertation], Harbin Institute of Technology, 1991

    Google Scholar 

  91. K.Z. Wang. Visual sensing and digital control system of MIG weld pool. Journal of Tsinghua University (Science and Technology). 1990, 30(2):22–29

    Google Scholar 

  92. W.Z. Chen, K. Inoue. Image processing method applied to on-line detection of narrow gap weaving. MIG/MAG. 1988, 9(4):247–253

    Google Scholar 

  93. H.Q. Li, K. Oshima. Study on observing and controlling MAG welding pool by digital image technique. Journal of Lanzhou University of Technology. 1988, 9(1):37–43

    Google Scholar 

  94. Q. Chen. Computer vision sensing technology and its application in weldin. Transactions of The China Welding Institution, 2001, 22(1):83–86

    Google Scholar 

  95. Y.L. Song, J.Y. Li. Thermo-equilibdum in welding are plasma. Transactions of The China Welding Institution. 1995, 15(2):138–145

    MathSciNet  Google Scholar 

  96. S. Nakata, J. Huang, Y. Tsuruha. Visual sensing system for in-process control of arc welding process. Welding International. 1988, (12):1086–1090

    Google Scholar 

  97. T. Hoffman. Real-time imaging for process control. Advanced Materials & Processes. 1991, (9):37–43

    Google Scholar 

  98. Y.M. Zhang, L. Li, R. Kovacevic. Monitoring of weld pool appearance for penetration control. 4th International Conference on Trends in Welding Research, Gatlinburg, Tennessee, USA, 1995:30–35

    Google Scholar 

  99. R. Kovacevic, Y.M. Zhang. Vision sensing of 3D weld pool surface. 4th International Conference on Trends in Welding Research, Gatlinburg, Tennessee, USA, 1995:85–91

    Google Scholar 

  100. K. Oshima, M. Morita. Observation and digital control of the molten pool in pulsed MIG welding. Welding International. 1988, 2(3):234–240

    Google Scholar 

  101. K. Oshima, M. Morita. Sensing and digital control of weld pool in pulsed MIG welding. Transactions of the Japan Welding Society. 1992, 23(4):36–42

    Google Scholar 

  102. D.B. Zhao. Intelligent control of weld pool dynamics in pulsed GTAW process with filler by 3-dimesion visual sensing, [Phd. dissertation] (in Chinese). Harbin: Harbin Institute of Technology, 2000

    Google Scholar 

  103. G.J. Zhang. Intelligent control of shaping seam in pulsed GTAW process with varied gaps and filler by visual sensing, [1.1.1.1.Phd. dissertation] (in Chinese). Harbin: Harbin Institute of Technology, 2002

    Google Scholar 

  104. Z. M Guo. Vision serving strategies for guiding welding robot to weld starting, [Phd. dissertation] (in Chinese). Harbin: Harbin Institute of Technology, 2002

    Google Scholar 

  105. Q. Chen et al. Application of computer vision in welding. Transactions on Welding (in Chinese), 2001, 22(1):83–86

    Google Scholar 

  106. R.C. Gonzalez, R. Woods. Digital Image Processing. 3rd ed, Addison-Wesley, 1977

    Google Scholar 

  107. W.K. Pratt. Digital Image Processing, John wiley and sons, New york. 1991

    MATH  Google Scholar 

  108. G.A. Baxes. Digital Image Processing: Principles and Applications, Whiley, New York, 1994

    Google Scholar 

  109. S.D. Yanowitz, A.M. Bruckstein. A new method for image segmentation, Computer vision, 1989, (46):82–95

    Google Scholar 

  110. J. Bernsen. Dynamic thresholding of gray-level images. 81CPR, 1986, 1251–1255

    Google Scholar 

  111. H. Szu, I. Kopriva, Artificial neural networks for noisy image super-resolution. Optics Communications. 2001, 198:71–81

    Article  Google Scholar 

  112. K. Etemad, R. Chellappa, A neural network based edge detector. IEEE International Conference on Neural Networks. 1993, 132–137

    Google Scholar 

  113. T. Warren, L. Damin, L. Yueming. Extraction of welds from radiographic images using fuzzy classifiers. Information Sciences. 2000, 126:21–40

    Article  MATH  Google Scholar 

  114. R. Kovacevic, Y.M. Zhang. Three-dimension measurement of weld pool surface. Proceedings of the International Conference on Modeling and Control of Joining Processeses, Oriando, Florida, USA, 1993, 600–607

    Google Scholar 

  115. Y.M. Zhang, M. Beardsley, R. Kovacevic. Real-time image processing for 3D measurement of weld pool surface. Manufacturing Science and Engineering. 1994, 68(1):255–262

    MATH  Google Scholar 

  116. D. Brzakovic, D.T. Khani. Weld pool edge detection for automated control of welding. IEEE Transactions on Robotics and Automation. 1991, 7(3):397–403

    Article  Google Scholar 

  117. T.L. Huntsberger, C.L. Javabs. Iterative fuzzy image segmentation, Pattern recognition. 1985, 18(2):131–138

    Article  Google Scholar 

  118. Y.L. Gao, L. Zhang, W.W. Wu. An algorithm for threshold based on arithmetic mean of gray valu. Journal of Image and Graphes. 1999, 4(6):524–528

    Google Scholar 

  119. K. Chen. An image segmentation algorithm based on edge detectio. Pattern Recognition and Artificial Intelligence. 1992, 5(1):25–29

    Google Scholar 

  120. D.B. Zhao, J.Q. Yi, S.B. Chen, L. Wu, Q. Chen. Extraction for three-dimension parameters for weld pool surface in pulsed GTAW with wire filler. Journal of Manufacturing Science and Engineering. 2003, 125(3):493–503

    Article  Google Scholar 

  121. D.B. Zhao, J.Q. Yi, S.B. Chen, L.Wu. “Surface Shape Reconstruction of Weld Pool During Pulsed GTAW From Its Single Image”, Series Lecture Notes in Control and Information Sciences, LNCIS. 2004, 299:56–62, (SCI)

    Google Scholar 

  122. K.M. Lee, C.J. Kuo. Surface reconstruction from photometric stereo images. Journal of Optical Society of America. 1993, 10(5):855–868

    Google Scholar 

  123. M. Clerc, S. Mallat . The texture gradient equation for recovering shape from texture. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(4):536–549

    Article  Google Scholar 

  124. R. Zhang, P. Tsai, J.E. Cryer, et al. Shape from shading: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(8):690–706

    Google Scholar 

  125. K.P. Horn, M.J. Brooks. The variational approach to shape from shading, Computer Vision. Graphics, and Image Processing. 1986, 33:174–208

    Article  Google Scholar 

  126. Y. Liao. Analysis and evaluation of several typical SFS algorithm. Journal of Image and Graphics. 2001, 6(10):953–961

    Google Scholar 

  127. Q.Y. Du, S.B. Chen, T. Lin. Inspection of weld shape based on the shape from shading, International Journal of Advanced Manufacturing Technology. 27(7–8):667–671 Jan 2006

    Google Scholar 

  128. J.F. Wang, L. Zhou, S.B. Chen. Measurement for three dimensional surface of welding pool in GTAW welding. Lecture Notes in Control and Information Sciences, LNCIS. 362:219–226, 2007(ISTP)

    Google Scholar 

  129. D. Quanying, C. Shanben, L. Tao. Reconstruction of weld pool surface based on shape from shading. Chinese Journal of Mechanical Engineering. 2006, 19(2):168–171 (Achieved the Best paper award in 2007)

    Google Scholar 

  130. L. Laiping, C. Shanben, L. Tao. The modeling of welding pool surface reflectance of aluminum alloy pulse GTAW. Materials Science and Engineering: A. 2005, 394:320–326

    Article  Google Scholar 

  131. B.Z. Jin, W.H. Liu, K.J. Ohshima. Control of weld pool width and cooling rate in circumferential GTA welding of pipe by using neural network model. In, International IEEE/IAS conference on industrial automation and control, Taipei, Taiwan, 1995, 41–46

    Google Scholar 

  132. K. Ohshima, M. Yabe, K. Akita, et al. Sensor fusion using neural network in the robotic welding, in, Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), Orlando, FL, USA, 1995, 1764–1769

    Google Scholar 

  133. S.B. Chen, W.J. Chen, L. Tao. Identification models of weld pool dynamic process in pulsed GTAW. Transactions of the China Welding Institution, 2001, 22(3):5–8

    Google Scholar 

  134. Y.M. Zhang, L. Li, R. Kovacevic. Dynamic estimation of full penetration using geometry of adjacent weld pools. ASME Journal of Manufacturing Science and Engineering, 1997, 119(11):631–643

    Google Scholar 

  135. I.S. Kim et al. A study on prediction of bead height in robotic arc welding using a neural network. Journal of Materials Processing Technology. 2002, 130–131, 229–234

    Google Scholar 

  136. Y. Koiono. Relation between surface temperature and reverse side bead width in TIG welding of thin mild steel plate. Journal of the Japan Welding Society. 1982, 51(3):52–55

    Google Scholar 

  137. D. Rosenthal. Mathematical theory of heat distribution during welding and cutting. Welding Journal. 1941, 20(3):220–234

    Google Scholar 

  138. N.D. Malmuth. Transient thermal phenomena and weld geometry in GTA welding. Welding Journal. 1974, 53(3):388–400

    Google Scholar 

  139. W.H. Kim. Heat and fluid flow in pulsed current GTA weld pool. International Journal of Heat and Mass Transfer. 1998, 41:3213–3227

    Article  Google Scholar 

  140. H.G. Fan. Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding. International Journal of Heat and Mass Transfer. 2001, 44:417–428

    Article  MATH  Google Scholar 

  141. M.A. Wahab. The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process. Journal of Materials Processing Technology. 1998, 77:233–239

    Article  Google Scholar 

  142. R.T.C. Choo, J. Szekely, S.A. David. On the calculation of the free surface temperature of gas tungsten arc weld pools from first principles: Part 2. Modeling the weld pool and comparison with experiments. Metal Transfer B. 1992, 23B:371–384

    Article  Google Scholar 

  143. D. Pradip. Thermal modeling of gas tungsten arc welding process with nonaxisymmetric boundary conditions. Numerical Heat Transfer: An International Journal of Computation and Methodology; Part A: Applications. 1995, 27:499–518

    Google Scholar 

  144. S. Yasuo, Measurement of molten pool shape and penetration control applying neural network in TIG welding of thin steel plates. ISIJ International, 1999, 39(10):1075–1080

    Article  Google Scholar 

  145. S. Nagarajan, B.A. Chin, On-line identification and control of part-preparation and fixturing errors in arc welding. Journal of Engineering for Industry. 1993, 115(11):385–389

    Article  Google Scholar 

  146. L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, 1973, 3, 28–44

    MATH  MathSciNet  Google Scholar 

  147. R. Kovacevic, Y.M. Zhang, On-line measurement of weld fusion state using weld pool image and neurofuzzy model. IEEE International Symposium on Intelligent Control – Proceedings. 1996, 307–312

    Google Scholar 

  148. P. Li, M.T.C. Fang, J. Lucas. Modelling of submerged arc weld beads using self-adaptive offset neutral networks. Journal of Materials Processing Technology. 1997, 71(2):288–298

    Article  Google Scholar 

  149. I.S. Kim, Y.K.D.V. Prasad, J.S. Son et al. A study on prediction of bead height in robotic arc welding using a neural network. Journal of Materials Processing Technology. 2002, 130–131:229–234

    Article  Google Scholar 

  150. D.S. Nagesh, G.L. Datta, Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology. 2002, 123(2):303–312

    Article  Google Scholar 

  151. K. Andersen, G.E. Cook, G. Karsai, et al. Artificial neural networks applied to arc welding process modelingand control. IEEE Transactions on Industry Applications. 1990, 26(5):824–830

    Article  Google Scholar 

  152. G.E. Cook, R.J. Barnett, K. Andersen, et al. Weld modeling and control using artificial neural networks. IEEE Transactions on Industry Applications. 1993, 31(6):2181–2189

    Google Scholar 

  153. B. Chan, J. Pacey, M. Bibby. Modelling gas metal arc weld geometry using artificial neural network technology, Canadian Metallurgical Quarterly(Netherlands), 1999, 38(1):43–51

    Google Scholar 

  154. Y. Suga. Application of neural network to visual Sensing of weld line and automatic tracking in robot welding. Welding in the World. 1994, 34:275–282

    Google Scholar 

  155. K. Andersen. Artificial neural networks applied to arc welding process modeling and control. IEEE Transactions on Industry Applications. 1990, 26(5):824–830

    Article  Google Scholar 

  156. D.S. Nagesh. Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology. 2002, 123(2):303–312

    Article  Google Scholar 

  157. L. Di, T. Srikanthanb, R.S. Chandelc. Neural-network-based self-organized fuzzy logic control for arc welding. Engineering Applications of Artificial Intelligence. 2001, 14:115–124

    Article  Google Scholar 

  158. B. Chan. Modeling gas metal arc weld geometry using artificial neural network technology. Canadian Metallurgical Quarterly. 1999, 38(1):43–51

    Article  Google Scholar 

  159. G.E. Cook. Weld modeling and control using artificial neural networks. IEEE Transactions on Industry Applications. 1995, 31(6):1484–1491

    Article  Google Scholar 

  160. J.-Y. Jeng. Prediction of laser butt joint welding parameters using back propagation and learning vector quantization networks. Journal of Materials Processing Technology. 2000, 99:207–218

    Article  Google Scholar 

  161. SUGA. Yasuo. Measurement of molten pool shape and penetration control applying neural network in TIG welding of thin steel plates. ISIJ International. 1999, 39(10):1075–1080

    Google Scholar 

  162. K. Andersen, E. George. Artificial neural networks applied to arc welding process modeling and control. IEEE Transactions on industry applications. 1990, 26(5):824–830

    Article  Google Scholar 

  163. S.Y. Li Fuzzy control, Neural Network and Intelligentized control theory (2nd edn) Harbin Institute of Technology Press, Harbin, 1996

    Google Scholar 

  164. Y.S. Tarng, J.L. Wu, S.S. Yen, S.C. Juang. Intelligent modeling and optimization of the gas tungsten arc welding, Journal of Intelligent Manufacturing. 1999, 10:73–79

    Article  Google Scholar 

  165. Z. Pawlak. Rough sets. International Journal of Information and Computer Science. 1982, 11(5):341–356

    Article  MATH  MathSciNet  Google Scholar 

  166. Z. Pawlak, Granularity of knowledge, indiscernibility and rough sets. Proceedings of IEEE International Conference on Computational Intelligence, 1998, 2:933–938

    Google Scholar 

  167. Y.Y. Yao. Comparative study of fuzzy sets and rough sets. Information Sciences. 1998, 109(1–4):227–242

    Article  MATH  MathSciNet  Google Scholar 

  168. D. Coker, Fuzzy rough sets are intuitionistic L-fuzzy sets. Fuzzy Sets and Systems. 1998, 96(3):381–383

    Article  MATH  MathSciNet  Google Scholar 

  169. S.T. Wang, E. Scott, A. Gamermann. Extract rules by using rough set and knowledge-based NN. Journal of Computer Science and Technology. 1998, 13(3):279–284

    Article  MATH  MathSciNet  Google Scholar 

  170. W. Li, H. Sun, S.B. Chen. A rough set method of building fuzzy model. Control Theory & Applications. 2001, 18(1):69–75

    MathSciNet  Google Scholar 

  171. G.J. Zhang, S.B. Chen, X. Liu, et al. Predicting the backside width of weld pool during pulsed gtaw process based on a neural network model [1.1.1.1.4565-30]. Proceeding- SPIE the International Society for Optical Engineering. 2001, 131–137

    Google Scholar 

  172. Y.J. Lou, S.B. Chen, L. Wu. Fuzzy-Neural network modeling and control of pool dynamic process in pulsed GTAW. Acta Automatica Sinica. 1997, 18, sup.12:194–198

    Google Scholar 

  173. Z. Dongbin, C. Shanben, W. Lin, C. Qiang. Neural network modeling for dynamic pulsed GTAW process with wire filler based on Matlab, China Welding v 10 n 2 November 2001, pp 88–93 (EI)

    Google Scholar 

  174. W. Li, H. Sun. Fuzzy logic identification method for TIG welding process modelin. Journal of the China Railway Society. 1998, 20(6):111–114

    Google Scholar 

  175. B. Wang, T. Lin. Knowledge acquiring in intelligent detecting system for lack of weld. Transactions of the China Welding Institution. 2001, 22 (003):29–32

    Google Scholar 

  176. B. Wang, S.B. Chen, T. Lin, Rough set based knowledge acquiring method in intelligent detecting system for lack of weld. Proceedings of the 4th World Congress on Intelligent Control and Automation. 2002, 4:2887–2891

    Google Scholar 

  177. B. Wang. Study on knowledge modeling method based on rough set theory for welding dynamic processed. [PhD dissertation] Shanghai Jiao Tong University, 2003

    Google Scholar 

  178. B. Wang, S.B. Chen, J.J. Wang. Rough set based knowledge modeling for the aluminum alloy pulsed gtaw process, The International Journal of Advanced Manufacturing Technology. 2005, 25(9):902–908

    Article  Google Scholar 

  179. G.G. Zhu. Study on discretization method in rough set based modeling method for welding. [Master dissertation] Shanghai Jiao Tong University, 2003

    Google Scholar 

  180. S.R. Zhang Study on reasoning method in rough set based modeling method for welding. [Master dissertation]. Shanghai Jiao Tong University, 2004

    Google Scholar 

  181. W. Ziarko. Variable precision rough set model. Journal of Computer and System Sciences. 1993, 46(1):39–59

    Article  MATH  MathSciNet  Google Scholar 

  182. J.S. Mi, W.Z. Wu, W.X. Zhang. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences. 2004, 159(3–4):255–272

    Article  MATH  MathSciNet  Google Scholar 

  183. A. Mieszkowicz-Rolka, L. Rolka, Variable precision fuzzy rough sets model in the analysis of process data. In Lecture Notes in Computer Science, Regina, Canada. 2005, 354–363

    Google Scholar 

  184. W.H. Li, S.B. Chen, B. Wang. A variable precision rough set based modeling method for pulsed GTAW. International Journal of Advanced Manufacturing Technology, Mar, 2007 (SCI)

    Google Scholar 

  185. W.H. Li, S.B. Chen, T. Lin. Discretiztion in rough set modeling method for welding process. Lecture Notes in Control and Information Sciences. LNCIS 362:325–332, 2007(ISTP)

    Google Scholar 

  186. X.X. Huang, F.H. Shi, S.B. Chen, A new support vector machine-based fuzzy system with high comprehensibility. Lecture Notes in Control and Information Sciences. LNCIS 362:421–427, 2007(ISTP)

    Google Scholar 

  187. X.X. Huang, S.B. Chen, SVM-based fuzzy modeling for the arc welding process. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 427(1-2):181–187 JUL 15 2006

    Google Scholar 

  188. A.E. Bentley, S.J. Marberger. Arc welding penetration control using quantitative feedback theory. Welding Journal. 1992, 71(11):397s–405s

    Google Scholar 

  189. S.S. Huang, D. Li. Study on neural network modellling and control of welding pool dynamic process. Chinese Journal of Mechanical Engineering. 1994, 30(3):24–29

    Google Scholar 

  190. J.L. Pan. Modern control of arc welding, Beijing. Mechanical Industry Press (in Chinese), 2000

    Google Scholar 

  191. J.A. Johnson, N.M. Carlson, D.E. Clark. Process control of gas metal arc weld: Sensing of metal transfer mode. Welding Journal. 1991, 70(4):91s–96s

    Google Scholar 

  192. D.A. Hartman. Intelligent control in arc welding. Intelligent Engineering Systems Through Artificial Neural Networks, ASME. 1999, 11:715–725

    Google Scholar 

  193. Y.M. Zhang. Study of adaptive top-vision control for full penetration in TIG welding. [1.Doctorial dissertation]. Harbin Institute of Technology, 1990

    Google Scholar 

  194. S.S. Huang, J.F. He, Y.L. Song. Fuzzy logic control system design of welding seam penetration during arc welding. Transactions of The China Welding Institution. 1996, 17(2):94–98

    Google Scholar 

  195. C. Doumanidis. Multivariable adaptive control of the bead profile geometry in gas metal arc welding with thermal scanning. International Journal of Pressure Vessels and Piping. 2002,79:251–262

    Article  Google Scholar 

  196. K.A. Pietrzak, S.M. Packer. Vision-based weld pool width control. ASME Journal of Engineering for Industry. 1994, 116(2):86–92

    Article  Google Scholar 

  197. Y.M. Zhang. Adaptive control of full penetration gas tungsten arc welding. IEEE Transactions on Control System Technology. 1996, 4(4):394–403

    Article  Google Scholar 

  198. A. Hirai. Sensing and control of weld pool by Fuzzy-Neural network in robotic welding system. The 27th Annual Conference of the IEEE Industrial Electronics Society. 2001, 238–242

    Google Scholar 

  199. M.A. Austin. Real-time multi-processing fuzzy logic adaptive control gas tungsten arc welding system. The IEEE Proceedings of the 4th WPDRTS. 1996:139–142

    Google Scholar 

  200. A. Bigand. Arc welding fuzzy control using neural net supervisor. IEEE. 1996:2003–2006

    Google Scholar 

  201. Y.M. Zhang. Neuro-fuzzy model based control of weld fusion zone geometry. The Proceedings of the American Control Conference. 1997, 6:2483–2487

    Google Scholar 

  202. K.J. Hunt. Neural networks for control system: A survey. Automatica. 1992, 28(6):1083–1112

    Article  MATH  MathSciNet  Google Scholar 

  203. B. Irving. Neural networks are paying off on the production line. Welding Journal. 1997, 76(10):59–64

    Google Scholar 

  204. S.S. Huang, D. Li. Weld quality control by neural network Welding in the Word. 1994, 34:359–363

    Google Scholar 

  205. Y. Kaneke, T. Iisaka, K. Oshima. Neuro-fuzzy control of the weld pool in pulsed MIG welding. Welding International. 1995, 9(3):191–196

    Article  Google Scholar 

  206. T.G. Lim, H.S. Cho. Estimation of weld pool sizes in GMA welding process using neural networks. Journal of Systems and Control Engineering. 1993, 207(1):15–26

    Google Scholar 

  207. J.W. Kim, S.J. Na. A self-organizing fuzzy control approach to arc sensor for weld joint tracking in gas metal arc welding of butt joints. Welding Journal. 1993, 72(1):60s–66s

    Google Scholar 

  208. Y. Suga. Application of neural network to visual sensing of weld line and automatic tracking in robot welding. Welding in the World. 1994, 34:275–282

    Google Scholar 

  209. K. Andersen. Artificial neural networks applied to arc welding process modeling and control. IEEE Transactions on Industry Applications. 1990, 26(5):824–830

    Article  Google Scholar 

  210. X. Gao. Shisheng huang. Fuzzy Neural Networks for Control of Penetration Depth during GTAW. China Welding. 2000, 1:1–8

    Google Scholar 

  211. S. Yamane. Application of fuzzy adaptive control to a welding robot. Proceedings of Second International Symposium on Signal Processing and its Application, Gold Coast, Australia. 1990, 8:271–274

    Google Scholar 

  212. C. Lin. Neural-network-based fuzzy logic control and decision system. IEEE Transaction on Computer. 1991, 40(12):1320–1336

    Article  Google Scholar 

  213. S.B. Chen et al. Intelligentized welding robot technology. Harbin Institute of Technology Press, Harbin, 2001

    Google Scholar 

  214. D.B. Zhao, S.B. Chen, L. Wu. Intelligent control for the shape of the weld pool in pulsed GTAW with filler metal. Welding Journal. 2001, 80(11): 253s–260s

    Google Scholar 

  215. S.B. Chen, L. Wu, Q.L. Wang, Y.C. Liu. Self-learning fuzzy neural networks and computer vision for control of pulsed GTAW. Welding Journal, 1997, 76(5):201s–209s

    Google Scholar 

  216. S.B. Chen, L. Wu, Q.L. Wang. Self-learning fuzzy neural networks for control of uncertain systems with time delays. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 1997, 27(1):142–148

    Article  Google Scholar 

  217. Y.J. Lou, S.B. Chen, L. Wu, Neuron PSD control based on sensing image of weld pool during pulsed GTAW. Proceedings of International Conference on Manufacturing Science, Wuhan, P.R.China, 10–12, June, 1998

    Google Scholar 

  218. Z. Guangjun, C. Shanben, W. Lin. Neuron self-learning PSD control for backside width of weld pool in pulsed GTAW with wire filler. China Welding. 2003, 12(1)

    Google Scholar 

  219. C. Wenjie, C. Shanben, L. Tao. Comparsion of three control methods in pulsed gas tungsten arc welding. Journal of Shanghai Jiaotong University, 2003, 8(1):63–66

    Google Scholar 

  220. S.B Chen, Y. Zhang, T. Qiu, T. Lin. Welding robotic systems with vision sensing and self-learning neuron control of arc weld dynamic process. Journal of Intelligent and Robotic Systems. 2003, 36(2):191–208

    Article  Google Scholar 

  221. S.B Chen, Y. Zhang, T. Lin, T. Qiu, L. Wu., Welding robotic systems with vision sensing and real-time control of dynamic weld pool during pulsed GTAW. International Journal of Robotic and Automation. 2004, 19(1):28–35

    Google Scholar 

  222. S.B. Chen, X.Z. Chen, J.Q. Li, T. Lin. Acquisition of welding seam space position information for arc welding robot based on vision. Journal of Intelligent & Robotic Systems. 2005, 43(1):77–97

    Article  Google Scholar 

  223. S.B. Chen, T. Qiu, et al., Intelligentlized technologies for robotic welding. Series Lecture Notes in Control and Information Sciences. 2004, 299:123–143

    Google Scholar 

  224. S.B. Chen, On the key intelligentized technologies of welding robot. Lecture Notes in Control and Information Sciences. 2007, LNCIS 362:105–116

    Google Scholar 

  225. H.Y. Shen, H.B. Ma, T. Lin, S.B. Chen, Research on weld pool control of welding robot with computer vision. Industrial Robot. 2007, 34(6):467–475

    Article  Google Scholar 

  226. H.Y. Shen, J. Wu, T. Lin, S.B. Chen. Arc welding robot system with seam tracking and weld pool control based on passive vision. The International Journal of Advanced Manufacturing Technology. 2007. (SCI)

    Google Scholar 

  227. C. XiZhang, Z. Zhenyou, C. Wenjie, C. Shanben. Vision-based recognition and guiding of initial welding position for arc-welding robot. Chinese Journal of Mechanical Engineering. 2005, 18(3):382–384

    Article  Google Scholar 

  228. L. Zhou, T. Lin, S.B. Chen. Autonomous acquisition of seam coordinates for arc welding robot based on visual servoing. Journal of Intelligent & Robotic Systems. 47(3):239–255 NOV 2006

    Google Scholar 

  229. X.Z. Chen, S.B. Chen, T. Lin, et al. Practical method to locate the initial weld position using visual technology. International Journal of Advanced Manufacturing Technology. 30(7–8):663–668 OCT 2006

    Google Scholar 

  230. Trailer. Manufacturer depends on robotic welding to boast production. Welding Journal. 1995, 74(7):49–51

    Google Scholar 

  231. S.B. Chen et al. Intelligentized welding robot technology. Mechanical Industry Press, Beijing, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, SB., Wu, J. (2009). Introduction. In: Intelligentized Methodology for Arc Welding Dynamical Processes. Lecture Notes in Electrical Engineering, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85642-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85642-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85641-2

  • Online ISBN: 978-3-540-85642-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics