Skip to main content

Improved Positional Accuracy of Robots with High Nonlinear Friction using a Modified Impulse Controller

  • Chapter

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 24))

Abstract

This paper presents a modified impulse controller to improve the steady state positioning of a SCARA robot having characteristics of high nonlinear friction. A hybrid control scheme consisting of a conventional PID part and an impulsive part is used as a basis to the modified controller. The impulsive part uses short width torque pulses to provide small impacts of force to overcome static fiction and move a robot manipulator towards its reference position. It has been shown that this controller can greatly improve a robot’s accuracy in position tracking. However, the system in attempting to reach steady state will inevitably enter into a small limit cycle whose amplitude of oscillation is related to the smallest usable impulse. It is shown in this paper that by modifying the impulse controller to adjust the width of successive pulses, the limit cycle can be shifted up or down in position so that the final steady state error can be even further reduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong-Hélouvry, B., 1991, “Control of Machines with Friction” Kluwer Academic Publishers, 1991, Norwell MA.

    MATH  Google Scholar 

  2. Armstrong-Hélouvry, B., Dupont, P., and Canudas de Wit, C., 1994, “A survey of models, analysis tools and compensation methods for the control of machines with frictionAutomatica, vol. 30(7), pp. 1083-1138.

    Article  MATH  Google Scholar 

  3. Canudas de Wit, C., Olsson, H., Åström, K. J., 1995 “A new model for control of systems with friction” IEEE Tansactions on Automatic Control, vol. 40 (3), pp. 419-425.

    Article  MATH  Google Scholar 

  4. Dahl, P., 1968, “A solid friction model” Aerospace Corp., El Segundo, CA, Tech. Rep. TOR-0158(3107-18)-1.

    Google Scholar 

  5. Dahl, P, 1977, “Measurement of solid friction parameters of ball bearings” Proc. of 6th annual Symp. on Incremental Motion, Control Systems and Devices, University of Illinois, ILO.

    Google Scholar 

  6. Hojjat, Y., and Higuchi, T., 1991 “Application of electromagnetic impulsive force to precise positioningInt J. Japan Soc. Precision Engineering, vol. 25 (1), pp. 39-44.

    Google Scholar 

  7. Johannes, V. I., Green, M.A., and Brockley,C.A., 1973, “The role of the rate of application of the tangential force in determining the static friction coefficient”, Wear, vol. 24, pp. 381-385.

    Article  Google Scholar 

  8. Johnson, K.L., 1987, “Contact Mechanics” Cambridge University Press, Cambridge.

    Google Scholar 

  9. Kato, S., Yamaguchi, K. and Matsubayashi, T., 1972, “Some considerations of characteristics of static friction of machine tool slidewayJ. o Lubrication Technology, vol. 94 (3), pp. 234-247.

    Google Scholar 

  10. Li, Z, and Cook, C.D., 1998, “A PID controller for Machines with Friction” Proc. Pacific Conference on Manufacturing, Brisbane, Australia, 18-20 August, 1998, pp. 401-406.

    Google Scholar 

  11. Olsson, H., 1996, “Control Systems with Friction” Department of Automatic Control, Lund University, pp.46-48.

    Google Scholar 

  12. Popovic, M.R., Gorinevsky, D.M., Goldenberg, A.A., 2000, “High precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller” IEEE Transactions on Control Systems Technology, vol. 8 (1) pp. 151-158.

    Article  Google Scholar 

  13. Rabinowicz, E., 1958, “The intrinsic variables affecting the stick-slip process,” Proc. Physical Society of London, vol. 71 (4), pp.668-675.

    Article  Google Scholar 

  14. Rathbun, D,. Berg, M. C., Buffinton, K. W., 2004, “Piecewise-Linear-Gain Pulse Width Control for Precise Positioning of Structurally Flexible Systems Subject to Stiction and Coulomb Friction”, ASME J .of it Dynamic Systems, Measurement and Control, vol. 126, pp. 139-126.

    Article  Google Scholar 

  15. Richardson, R. S. H., and Nolle, H., 1976, “Surface friction under time dependant loadsWear, vol. 37 (1), pp.87-101.

    Article  Google Scholar 

  16. Wu, R,. Tung, P., 2004, “Fast Positioning Control for Systems with Stick-Slip Friction”, ASME J .of Dynamic Systems, Measurement and Control, vol. 126, pp. 614-627.

    Article  Google Scholar 

  17. Yang, S., Tomizuka, M., 1988, “Adaptive pulse width control for precise positioning under the influence of stiction and Coulomb friction” ASME J .of Dynamic Systems, Measurement and Control, vol. 110 (3), pp. 221-227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Duin, S., Cook, C.D., Li, Z., Alici, G. (2009). Improved Positional Accuracy of Robots with High Nonlinear Friction using a Modified Impulse Controller. In: Filipe, J., Cetto, J.A., Ferrier, JL. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85640-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85640-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85639-9

  • Online ISBN: 978-3-540-85640-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics