Skip to main content

Learning of Digital Spiking Neuron and its Application Potentials

  • Chapter
Applications of Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The digital spiking neuron consists of shift registers and behaves like a simplified neuron model. By adjusting wirings among the registers, the neuron can generate spike-trains with various characteristics. In this paper some analysis results on spike-train properties are outlined. Also a learning algorithm for the neuron is introduced and its application potentials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Torikai and T. Saito, Synchronization phenomena in pulse-coupled networks driven by spike-train inputs, IEEE Trans. Neural Networks, vol. 15, no. 2, pp. 337–347, 2004.

    Article  Google Scholar 

  2. G. Lee and N. H. Farhat, The bifurcating neuron network 2, Neural networks, vol.15, pp. 69–84, 2002.

    Google Scholar 

  3. R. Perez and L .Glass, Bistability, period doubling bifurcations and chaos in a periodically forced oscillator, Phys. Lett. vol.90A, no.9, pp. 441–443, 1982.

    MathSciNet  Google Scholar 

  4. E. M. Izhikevich, Dynamical systems in neuroscience, MIT Press,2006.

    Google Scholar 

  5. J. J. Hopfield and A. V. M. Herz, Rapid local synchronization of action potentials: Toward computation with coupled integrate-and-fire neurons, Proc. Natl. Acad. Sci. USA, vol. 92, pp. 6655–6662, 1995.

    Article  Google Scholar 

  6. S. R. Campbell, D. Wang and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators, Neural computation, vol. 11, pp. 1595–1619, 1999.

    Article  Google Scholar 

  7. R. Eckhorn, Neural mechanisms of scene segmentation: recordings from the visual cortex suggest basic circuits for linking field models, IEEE Trans. Neural Networks, vol.10, no.3, pp. 464–479, 1999.

    Article  Google Scholar 

  8. S. Wolfram, Universality and complexity in cellular automata, Pysica D, vol. 10, pp. 1–35, 1984.

    Article  Google Scholar 

  9. L. O. Chua, S. Yoon and R. Dogaru, A nonlinear dynamics perspective of Wolfram’s new kind of science. Part I: threshold of complexity, Int. J. Bif. and Chaos, vol. 12, no.12, pp. 2655–2766, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Tamura, J. Kuroiwa and S. Nara, Errorless reproduction of given pattern dynamics by means of cellular automata, Physical Review E 68, 036707, 2003.

    Article  MathSciNet  Google Scholar 

  11. S. C. Kim and B. G Lee, A theory on sequence spaces and shift register generators, IEEE Trans. Comm. vol.44, no.5, pp. 609–618, 1996.

    Article  Google Scholar 

  12. D. E. Knuth, The art of computer programming, vol. 2, 3rd edn., Addison Wesley, 1998.

    Google Scholar 

  13. H. Torikai, H. Hamanaka and T. Saito, Reconfigurable Digital Spiking Neuron and its Pulse-Coupled Network: Basic Characteristics and Potential Applications, IEEE Trans. CAS-II, vol. 53, no.8, pp. 734–738, 2006.

    Google Scholar 

  14. H. Torikai, Basic Characteristics and Learning Potential of a Digital Spiking Neuron, IEICE Trans. Fundamentals, 2007 (to appear).

    Google Scholar 

  15. H. Torikai, Y. Shimizu and T. Saito, Various spike-trains from a digital spiking neuron: analysis of inter-spike intervals and their modulation, Proc. of IJCNN, 2006, pp. 7591–7598.

    Google Scholar 

  16. H. Torikai, Y. Shimizu and T. Saito, A digital spiking neuron and its simple learning, Proc. of NOLTA pp. 263–266, 2006.

    Google Scholar 

  17. T. Kabe, H. Torikai and T. Saito, Synchronization via multiplex spike-trains in digital pulse-coupled networks, Lecture Note on Computational Science, 4234, Springer, Neural Information Processing, III, pp. 1141–1149 (2006). {\em The Best Student Paper Award of ICONIP2006.}

    Google Scholar 

  18. H. Torikai, A. Funew and T. Saito, Approximation of Spike-trains by Digital Spiking Neuron, Proc. of IJCNN, paper #1708, 2007.

    Google Scholar 

  19. G. M. Maggio, N. Rulkov and L. Reggiani, Pseudo-chaotic time hopping for UWB impulse radio, IEEE Trans. CAS-I, vol. 48, no. 12, pp. 1424–1435, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby and J. Haapola, UWB wireless sensor networks: UWEN - a practical example, IEEE Communications Magazine, vol. 42, no.12, pp. S27-S32, 2004.

    Article  Google Scholar 

  21. M. G. Benedetto and G. Giancola, Understanding Ultra Wide Band Radio Fundamentals, Prentice Hall, 2004.

    Google Scholar 

  22. W. Chu and C. J. Colbourn, Sequence designs for ultra-wideband impulse radio with optimal correlation properties, IEEE Trans. Information Theory, vol. 50, no.10, pp. 2402–2407, 2004.

    Article  MathSciNet  Google Scholar 

  23. G. Bi and M. Poo, Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type, J. Neurosci., vol. 18, pp. 10464–10472, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torikai, H. (2009). Learning of Digital Spiking Neuron and its Application Potentials. In: In, V., Longhini, P., Palacios, A. (eds) Applications of Nonlinear Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85632-0_22

Download citation

Publish with us

Policies and ethics