Skip to main content

Applying Stochastic Signal Quantization Theory to the Robust Digitization of Noisy Analog Signals

  • Chapter
Book cover Applications of Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Suprathreshold stochastic resonance is a variant of stochastic resonance that has been shown to occur in parallel arrays of independently noisy, but otherwise identical, binary threshold devices. It can be described as a form of stochastic signal quantization that utilizes independently random noise sources to digitize an analog signal. This paper outlines a generalization of this effect, and discusses several sensor applications in which it can occur, such as analog-to-digital converter circuits, distributed sensor networks and the reduction of in-band noise via coherent integration in radar, sonar and sodar systems. All of these scenarios can be modeled using a framework called a ‘stochastic pooling network.’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.G. Stocks, Physical Review Letters 84(11), 2310 (2000)

    Article  Google Scholar 

  2. M.D. McDonnell, D. Abbott, C.E.M. Pearce, Fluctuation and Noise Letters 2(3), L205 (2002)

    Article  Google Scholar 

  3. P.O. Amblard, S. Zozor, N.G. Stocks, M.D. McDonnell, in \emph{Proc. SPIE Noise and Fluctuations in Biological, Biophysical, and Biomedical Systems}, vol. 6602, ed. by S.M. Bezrukov (2007), vol. 6602, p. 66020S

    Google Scholar 

  4. R.M. Gray, D.L. Neuhoff, IEEE Transactions on Information Theory 44(6), 2325 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. N.G. Stocks, Physical Review E 63(4), 041114 (2001)

    Article  Google Scholar 

  6. M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Physics Letters A 352, 183 (2006)

    Article  Google Scholar 

  7. M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, \emph{Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantisation} (Cambridge University Press, 2008 (In Press))

    Google Scholar 

  8. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Reviews of Modern Physics 70(1),223–287 (1998)

    Article  Google Scholar 

  9. S. Durrant, J. Feng, Suprathreshold stochastic resonance in neural processing tuned by correlation (2006). \newblock To be submitted to Physical Review E

    Google Scholar 

  10. N.G. Stocks, R. Mannella, Physical Review E 64, 030902(R) (2001)

    Article  Google Scholar 

  11. T. Hoch, G. Wenning, K. Obermayer, Physical Review E 68(3), 011911 (2003)

    Article  Google Scholar 

  12. P.O. Amblard, S. Zozor, O.J.J. Michel, in \emph{Proc. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing}, vol. 3 (2006), vol. 3, pp. 716–719

    Google Scholar 

  13. S. Zozor, P. Amblard, C. Duchêne, Fluctuation and Noise Letters 7, L39 (2007)

    Article  Google Scholar 

  14. T.M. Cover, J.A. Thomas, \emph{Elements of Information Theory} (Wiley, New York, 1991)

    Google Scholar 

  15. N.G. Stocks, Physics Letters A 279(5-6), 308 (2001)

    Article  MATH  Google Scholar 

  16. M.D. McDonnell, D. Abbott, C.E.M. Pearce, Microelectronics Journal 33(12), 1079 (2002)

    Article  Google Scholar 

  17. D. Rousseau, F. Duan, F. Chapeau-Blondeau, Physical Review E 68, 031107 (2003)

    Article  Google Scholar 

  18. M.D. McDonnell, N.G. Stocks, D. Abbott, Physical Review E 75, 061105 (2007)

    Article  MathSciNet  Google Scholar 

  19. V.K. Madisetti, D.B. Williams, \emph{The Digital Signal Processing Handbook} (CRC Press, 1999)

    Google Scholar 

  20. M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, in \emph{Proc. SPIE Smart Structures, Devices, and Systems II}, vol. 5649, ed. by S.F. Al-Sarawi (2005), vol. 5649, pp. 75–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDonnell, M.D. (2009). Applying Stochastic Signal Quantization Theory to the Robust Digitization of Noisy Analog Signals. In: In, V., Longhini, P., Palacios, A. (eds) Applications of Nonlinear Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85632-0_20

Download citation

Publish with us

Policies and ethics