Skip to main content

Activated Switching in a Parametrically Driven Micromechanical Torsional Oscillator

  • Chapter

Part of the book series: Understanding Complex Systems ((UCS))

Parametric resonance and parametric amplification are important phenomena that are relevant to many fields of science. For mechanical systems, parametric driving typically involve modulating the spring constant [1, 2] or the moment of inertia near twice the natural frequency of the system. Parametric amplification has proved useful in improving the signal to noise before transduction of the mechanical displacement into an electrical signal [1]. Apart from amplifying a signal, parametric pumping can also reduce the linewidth of the resonance response, opening up new opportunities for biochemical detection using micro- and nano-mechanical devices in viscous environments [3]. Recently the sharp jump in the parametric response of micromechanical oscillators at subcritical bifurcation was used for accurate determination of the natural frequency to deduce device parameters [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Rugar and P. Grutter, Phys. Rev. Lett. 67, 699 (1991).

    Article  Google Scholar 

  2. D. W. Carr, S. Evoy, L. Sekaric, et al., Appl. Phys. Lett. 77, 1545 (2000).

    Article  Google Scholar 

  3. L. Sekaric, M. Zalalutdinov, R. B. Bhiladvala, et al., Appl. Phys. Lett. 81, 2641 (2002).

    Article  Google Scholar 

  4. W. H. Zhang, R. Baskaran, and K. L. Turner, Sensors and Actuators a-Physical 102, 139 (2002).

    Article  Google Scholar 

  5. M. I. Dykman and M. A. Krivoglaz, Zh. Eksper. Teor. Fiz. 77, 60 (1979).

    Google Scholar 

  6. M. I. Dykman, C. M. Maloney, V. N. Smelyanskiy, et al., Phys. Rev. E 57, 5202 (1998).

    Article  Google Scholar 

  7. L. J. Lapidus, D. Enzer, and G. Gabrielse, Phys. Rev. Lett. 83, 899 (1999).

    Article  Google Scholar 

  8. J. S. Aldridge and A. N. Cleland, Phys. Rev. Lett. 94, 156403 (2005).

    Article  Google Scholar 

  9. C. Stambaugh and H. B. Chan, Phys. Rev. B 73, 172302 (2006).

    Article  Google Scholar 

  10. R. L. Badzey and P. Mohanty, Nature 437, 995 (2005).

    Article  Google Scholar 

  11. R. Almog, S. Zaitsev, O. Shtempluck, et al., Appl. Phys. Lett. 90, 013508 (2007).

    Article  Google Scholar 

  12. E. V. Sukhorukov and A. N. Jordan, Phys. Rev. Lett. 98, 136803 (2007).

    Article  Google Scholar 

  13. I. Siddiqi, R. Vijay, F. Pierre, et al., Phys. Rev. Lett. 93, 207002 (2004).

    Article  Google Scholar 

  14. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R. J. Schoelkopf, M. H. Devoret, D. Vion, and D.Esteve, Phys. Rev. Lett. 94, 027005 (2005).

    Article  Google Scholar 

  15. K. Kim, M. S. Heo, K. H. Lee, et al., Phys. Rev. A 72, 053402 (2005).

    Article  Google Scholar 

  16. K. Kim, M. S. Heo, K. H. Lee, et al., Phys. Rev. Lett. 96, 150601 (2006).

    Article  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Mechanics, Course of theoretical physics vol.1, (1969).

    Google Scholar 

  18. I. Siddiqi, R. Vijay, F. Pierre, et al., cond-mat/0507248 (2005).

    Google Scholar 

  19. M. I. Dykman, I. B. Schwartz, and M. Shapiro, Phys. Rev. E 72, 021102 (2005).

    Article  Google Scholar 

  20. D. Ryvkine and M. I. Dykman, Phys. Rev. E 74, 061118 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chan, H., Stambaugh, C. (2009). Activated Switching in a Parametrically Driven Micromechanical Torsional Oscillator. In: In, V., Longhini, P., Palacios, A. (eds) Applications of Nonlinear Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85632-0_2

Download citation

Publish with us

Policies and ethics