Skip to main content

Process-Induced Defects in Germanium

  • Chapter
Book cover Extended Defects in Germanium

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 118))

  • 789 Accesses

The fabrication of devices in a germanium substrate relies on processing techniques that can be quite aggressive to the material. Chemical etching can introduce metallic and other impurities in the near-surface layer, which diffuse deeper in the bulk during a subsequent heat treatment, thereby affecting the electrical (lifetime and resistivity) properties. Dry etching, on the other hand, results in the creation of radiation damage, as energetic ions are used to sputter/remove locally the Ge atoms from the surface. While in the early days doping profiles were tailored by solid- or gas-source diffusion of Group III and V impurities, the industrial standard is now ion implantation, whereby the depth of the profile (junction) is selected through the energy of the ions, while the dose settles the sheet resistance. However, ion implantation creates radiation damage by displacing Ge atoms from their lattice site. At sufficiently high doses, this results in a complete amorphization of the implanted layer. Therefore, to cure the damage and activate the dopants, that is, to move them on a substitutional lattice site, a thermal anneal is required. For shallow junction formation, the thermal budget of this anneal should be well controlled, to avoid excessive diffusion of the dopant atoms. Generally, there exists a trade-off between damage removal (low leakage current), on the one hand, and maintaining a shallow doping profile on the other. The traditional furnace annealing (FA), is nowadays replaced by the so-called rapid thermal annealing (RTA) and even spike annealing, in the case of silicon CMOS. At the moment, extensive research is being performed on more advanced activation techniques, combining preamorphization of the substrate with solid-phase epitaxial regrowth (SPER) of the implanted layer. The presence of an amorphized layer also opens the door for the implementation of intense laser annealing. At the same time, flash lamp annealing enables to heat the sample on a very short time scale (millisecond) even compared with the spike annealing achievable in standard RTA equipment.

In this chapter, processing-induced defect formation and removal will be discussed, with particular emphasis on ion implantation damage. In the first paragraph, the fundamental ion-implantation damage mechanisms will be discussed in terms of the collision cascade (CC) theory. It will be shown that for high energy density cascades, a deviation occurs which is related to a collective movement of atoms, most likely due to the occurrence of so-called thermal spikes. It will also be shown that MeV self-ion implantation helps to reveal the nature of the damage nucleation — homogeneous (Si) or heterogeneous (Ge). As will be shown for Ge, for high-dose heavy-ion implantations, there exists a damage phase beyond complete amorphization, whereby voids or pores are being formed. In a third paragraph, high-temperature annealing mechanisms will be discussed. Next, ion implantation of the traditional Group III and V dopants is highlighted. As we see in Sect. 5.5, there exists also some interest in implanting oxygen and nitrogen in Ge for certain applications. Currently, also the implantation of low-energy, high-dose hydrogen in Ge is of technological relevance, in the frame of the smart-cut fabrication of Germanium-on-Insulator (GeOI) substrates (Sect. 5.6). Finally, the defect formation during other processing steps will be briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Thompson, R.S. Walker, J.A. Davies, Rad. Eff. 32, 135 (1977)

    Article  CAS  Google Scholar 

  2. D.Y.C. Lie, A. Vantomme, F. Eisen, T. Vreeland Jr., M.-A. Nicolet, T.K. Carns, Arbet-V. Engels, K.L. Wang, J. Appl. Phys. 74, 6039 (1993)

    Article  ADS  CAS  Google Scholar 

  3. D.Y.C. Lie, J. Electron. Mater. 27, 377 (1998)

    Article  ADS  CAS  Google Scholar 

  4. G. Foti, G. Vitali, J.A. Davies, Rad. Eff. 32, 187 (1977)

    Article  CAS  Google Scholar 

  5. J.R. Parsons, Phil. Mag. 12, 1159 (1965)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  6. M.L. Swanson, J.R. Parsons, C.W. Hoelke, Rad. Eff. 9, 249 (1971)

    Article  CAS  Google Scholar 

  7. T.E. Haynes, O.W. Holland, Appl. Phys. Lett. 59, 452 (1991)

    Article  ADS  CAS  Google Scholar 

  8. T.E. Haynes, O.W. Holland, Appl. Phys. Lett. 61, 61 (1992)

    Article  ADS  CAS  Google Scholar 

  9. M. Posselt, L. Bischoff, D. Grambole, F. Hermann, Appl. Phys. Lett. 89, 151918-1/3 (2006)

    Google Scholar 

  10. S. Koffel, A. Claverie, BenG. Assayag, P. Scheiblin, Mater. Sci. Semicond. Process 9, 664 (2006)

    Article  CAS  Google Scholar 

  11. C. Ascheron, J.P. Biersack, D. Fink, P. Goppelt, A. Manuaba, F. Paszti, N.Q. Khanh, Nucl. Instrum. Methods Phys. Res. B 68, 443 (1992)

    Article  ADS  Google Scholar 

  12. C. Ascheron, A. Schindler, R. Flagmeyer, G. Otto, Nucl. Instrum. Methods Phys. Res. B 36, 163 (1989)

    Article  ADS  Google Scholar 

  13. S.U. Campisano, G. Foti, F. Grasso, E. Rimini, Appl. Phys. Lett. 21, 425 (1972)

    Article  ADS  CAS  Google Scholar 

  14. V.S. Speriosu, B.M. Paine, M.-A. Nicolet, H.L. Glass, Appl. Phys. Lett. 40, 604 (1982)

    Article  ADS  CAS  Google Scholar 

  15. T.P. Sjoreen, O.W. Holland, M.K. El-Ghor, C.W. White, Mater. Res. Symp. Proc. 128, 593 (1989)

    CAS  Google Scholar 

  16. K.-M. Wang, F. Lu, M.-Q. Meng, B.-R. Shi, X.-D. Liu, J.-T. Liu, T.-B. Xu, P.-R. Zhu, J. Vac. Sci. Technol. B 16, 1034 (1998)

    Article  CAS  Google Scholar 

  17. S.T. Picraux, H.J. Stein, J. Appl. Phys. 45, 3784 (1974)

    Article  ADS  CAS  Google Scholar 

  18. I.H. Wilson, J. Appl. Phys. 53, 1698 (1982)

    Article  ADS  CAS  Google Scholar 

  19. B.R. Appleton, O.W. Holland, J. Narayan, O.E. Schow III, J.S. Williams, K.T. Short, E. Lawson, Appl. Phys. Lett. 41, 711 (1982)

    Article  ADS  CAS  Google Scholar 

  20. O.W. Holland, B.R. Appleton, J. Narayan, J. Appl. Phys. 54, 2295 (1983)

    Article  ADS  CAS  Google Scholar 

  21. E.M. Lawson, K.T. Short, J.S. Williams, B.R. Appleton, O.W. Holland, O.E. Schow III, Nucl. Instrum. Methods Phys. Res. 209/210, 303 (1983)

    Article  Google Scholar 

  22. B.R. Appleton, Mater. Res. Soc. Symp. Proc. 27, 195 (1984)

    CAS  Google Scholar 

  23. I.B. Khaibullin, G.G. Zakirov, M.M. Zaripov, T. Lohner, L. Pogány, G. Mezey, M. Fried, E. Kótai, F. Pászti, A. Manuaba, J. Gyulai, Phys. Stat. Sol. (A) 94, 371 (1986)

    Article  CAS  Google Scholar 

  24. L.M. Wang, R.C. Birtcher, Appl. Phys. Lett. 55, 2494 (1989)

    Article  ADS  CAS  Google Scholar 

  25. L.M. Wang, R.C. Birtcher, Phil. Mag. A 64, 1209 (1991)

    Article  ADS  CAS  Google Scholar 

  26. H. Huber, W. Assmann, S.A. Karamian, A. Mücklich, W. Prusseit, E. Gazis, R. Grötzschel, M. Kokkoris, E. Kossionidis, H.D. Mieskes, R. Vlastou, Nucl. Instrum. Methods Phys. Res. B 122, 542 (1997)

    Article  ADS  CAS  Google Scholar 

  27. H. Huber, W. Assmann, S.A. Karamian, H.D. Mieskes, H. Nolte, E. Gazis, M. Kokkoris, S. Kossionides, R. Vlastou, R. Grötzschel, A. Mücklich, W. Prusseit, Nucl. Instrum. Methods Phys. Res. B 146, 309 (1998)

    Article  ADS  CAS  Google Scholar 

  28. J.S. Williams, D.J. Chivers, R.G. Elliman, S.T. Johnson, E.M. Lawson, I.V. Mitchell, K.G. Orrman-Rossiter, A.P. Pogany, K.T. Short, Mater. Res. Soc. Symp. Proc. 27, 205 (1984)

    CAS  Google Scholar 

  29. T. Janssens, C. Huyghebaert, D. Vanhaeren, G. Winderickx, A. Satta, M. Meuris, W. Vandervorst, J. Vac. Sci. Technol. B 24, 510 (2006)

    Article  CAS  Google Scholar 

  30. L. Csepregi, R.P. Cüllen, J.W. Mayer, T.W. Sigmon, Solid State Commun. 21, 1019 (1977)

    Article  ADS  CAS  Google Scholar 

  31. I. Suni, G. Göltz, M.-A. Nicolet, S.S. Lau, Thin Solid Films 93, 171 (1982)

    Article  ADS  CAS  Google Scholar 

  32. P. Kringhøj, R.G. Elliman, Phys. Rev. Lett. 73, 858 (1994)

    Article  PubMed  ADS  Google Scholar 

  33. T.E. Haynes, M.J. Antonell, C.A. Lee, K.S. Jones, Phys. Rev. B 51, 7762 (1995)

    Article  ADS  CAS  Google Scholar 

  34. Á. Barna, P.B. Barna, J.F. Pócza, J. Non-Cryst. Solids 8–10, 36 (1972)

    Article  Google Scholar 

  35. P. Germain, S. Squelard, J. Bourgoin, A. Gheorghiu, J. Appl. Phys. 48, 1909 (1977)

    Article  ADS  CAS  Google Scholar 

  36. P. Germain, K. Zellama, S. Squelard, J.C. Bourgoin, A. Gheorghiu, J. Appl. Phys. 50, 6986 (1979)

    Article  ADS  CAS  Google Scholar 

  37. K. Zellama, J.F. Morhange, P. Germain, J.C. Bourgoin, Phys. Stat. Sol. (A) 56, 717 (1979)

    Article  CAS  Google Scholar 

  38. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, D.C. Jacobson, Mater. Res. Soc. Symp. Proc. 27, 211 (1984)

    CAS  Google Scholar 

  39. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, D.C. Jacobson, J. Appl. Phys. 57, 1795 (1985)

    Article  ADS  CAS  Google Scholar 

  40. G.-Q. Lu, E. Nygren, M.J. Aziz, J. Appl. Phys. 70, 5323 (1991)

    Article  ADS  CAS  Google Scholar 

  41. F. Edelman, Y. Komem, M. Bendayan, R. Beserman, J. Appl. Phys. 72, 5153 (1992)

    Article  ADS  CAS  Google Scholar 

  42. D.P. Hickey, Z.L. Bryan, K.S. Jones, R.G. Elliman, E.E. Haller, Appl. Phys. Lett. 90, 132114-1/3 (2007)

    Google Scholar 

  43. F. Oki, Y. Ogawa, Y. Fujiki, Jpn. J. Appl. Phys. 8, 1056 (1969)

    Article  ADS  CAS  Google Scholar 

  44. G. Ottaviani, D. Sigurd, V. Marrello, J.W. Mayer, J.O. McCaldin, J. Appl. Phys. 45, 1730 (1974)

    Article  ADS  CAS  Google Scholar 

  45. D. Sigurd, G. Ottaviani, H.J. Arnal, J.W. Mayer, J. Appl. Phys. 45, 1740 (1974)

    Article  ADS  CAS  Google Scholar 

  46. Y. Ohmachi, T. Nishioka, Y. Shinoda, Appl. Phys. Lett. 43, 971 (1983)

    Article  ADS  CAS  Google Scholar 

  47. A.R. Zanatta, I. Chambouleyron, J. Appl. Phys. 97, 094914 (2005)

    Article  ADS  CAS  Google Scholar 

  48. H.J. Matzke, Rad. Eff. 3, 93 (1970)

    Article  CAS  Google Scholar 

  49. J.R. Parsons, R.W. Balluffi, J. Phys. Chem. Solids 25, 263 (1964)

    Article  ADS  CAS  Google Scholar 

  50. S.A. Karamyan, Y.T. Oganessian, V.N. Bugrov, Nucl. Instrum. Methods Phys. Res. B 43, 153 (1989)

    Article  ADS  Google Scholar 

  51. J.W. Mayer, J.A. Davies, L. Eriksson, Appl. Phys. Lett. 11, 365 (1967)

    Article  ADS  CAS  Google Scholar 

  52. J.W. Mayer, L. Eriksson, S.T. Picraux, J.A. Davies, Canad. J. Phys. 46, 663 (1968)

    ADS  CAS  Google Scholar 

  53. G.D. Alton, L.O. Love, Canad. J. Phys. 46, 695 (1968)

    ADS  CAS  Google Scholar 

  54. K. Björkqvist, B. Domeij, L. Eriksson, G. Fladda, A. Fontell, J.W. Mayer, Appl. Phys. Lett. 13, 379 (1968)

    Article  ADS  Google Scholar 

  55. L. Eriksson, G. Fladda, K. Björkqvist, Appl. Phys. Lett. 14, 195 (1969)

    Article  ADS  CAS  Google Scholar 

  56. K. Björkqvist, D. Sigurd, G. Fladda, G. Bjarnholt, Rad. Eff. 6, 141 (1970)

    Article  Google Scholar 

  57. H. Kräutle, Rad. Eff. 24, 255 (1975)

    Article  Google Scholar 

  58. D. Sigurd, G. Fladda, L. Eriksson, K. Björkqvist, Rad. Eff. 3, 145 (1970)

    Article  CAS  Google Scholar 

  59. P.J. MacDonald, D.W. Palmer, Inst. Phys. Conf. Ser. No. 23, 504 (1975)

    CAS  Google Scholar 

  60. K.S. Jones, E.E. Haller, J. Appl. Phys. 61, 2469 (1987)

    Article  ADS  CAS  Google Scholar 

  61. Y.S. Suh, M.S. Carroll, R.A. Levy, M.A. Sahiner, G. Bisognin, C.A. King, IEEE Trans. Electron. Devices 52, 91 (2005)

    Article  ADS  CAS  Google Scholar 

  62. S. Suzuki, K. Ikeda, Y. Yamashita, S. Takagi, Jpn. J. Appl. Phys. 46, 926 (2007)

    Article  ADS  CAS  Google Scholar 

  63. V.M. Gusev, M.I. Guseva, E.S. Ionova, A.N. Mansurova, C.V. Starinin, Phys. Stat. Sol. (A) 21, 413 (1974)

    Article  CAS  Google Scholar 

  64. A. Satta, E. Simoen, T. Clarysse, T. Janssens, A. Benedetti, B. De Jaeger, M. Meuris, W. Vandervorst, Appl. Phys. Lett. 87, 172109/1–(2005)

    Article  CAS  Google Scholar 

  65. A. Satta, E. Simoen, T. Janssens, T. Clarysse, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, W. Vandervorst, J. Electrochem. Soc. 153, G229 (2006)

    Article  CAS  Google Scholar 

  66. Y.-L. Chao, S. Prussin, J.C.S. Woo, R. Scholz, Appl. Phys. Lett. 87, 142102/1–3 (2005)

    Google Scholar 

  67. C. Jasper, L. Rubin, C. Lindfors, K.S. Jones, J. Oh, in Proc. 14th Int. Conf. Ion Implantation Technology(IEEE, Piscataway, NJ, 2002) p 548

    Google Scholar 

  68. V. Hadek, D.M. Watson, C.A. Beichman, M.D. Jack, Phys. Rev. B 31, 3630 (1985)

    Article  ADS  CAS  Google Scholar 

  69. I.C. Wu, J.W. Beeman, P.N. Luke, W.L. Hansen, E.E. Haller, Appl. Phys. Lett. 58, 1431 (1991)

    Article  ADS  CAS  Google Scholar 

  70. T. Itoh, I. Ohdomari, Jpn J. Appl. Phys. 10, 1002 (1971)

    Article  ADS  CAS  Google Scholar 

  71. K. Benourhazi, J.P. Ponpon, Nucl. Instrum. Methods Phys. Res. B 71, 406 (1992)

    Article  ADS  Google Scholar 

  72. A. Satta, E. Simoen, R. Duffy, T. Janssens, T. Clarysse, A. Benedetti, M. Meuris, W. Vandervorst, Appl. Phys. Lett. 88, 162118/1–3 (2006)

    Article  CAS  Google Scholar 

  73. A. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisse, W. Vandervorst, J. Vac. Sci. Technol. B 24, 494 (2006)

    Article  CAS  Google Scholar 

  74. N.D. Zakharov, V.N. Rozhanskii, P.L. Korchazhkina, Sov. Phys. Solid State 16, 926 (1974)

    Google Scholar 

  75. D.J. Bottomley, M. Iwami, Y. Uehara, S. Ushioda, J. Vac. Sci. Technol. A 17, 698 (1999)

    Article  ADS  CAS  Google Scholar 

  76. C.H. Poon, L.S. Tan, B.J. Cho, A.Y. Du, J. Electrochem. Soc. 152, G895 (2005)

    Article  CAS  Google Scholar 

  77. E. Simoen, A. Satta, A. D'Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, W. Vandervorst, Mater. Sci. Semicond. Process 9, 634 (2006)

    Article  CAS  Google Scholar 

  78. A. Satta, A. D'Amore, E. Simoen, T. Janssens, T. Clarysse, W. Anwand, W. Skorupa, Nucl. Instrum. Methods Phys. Res. B 257, 157 (2007)

    Article  ADS  CAS  Google Scholar 

  79. M. Posselt, B. Schmidt, W. Anwand, R. Grötzschel, V. Heera, A. Mücklich, C. Wündisch, W. Skorupa, H. Hortenbach, S. Gennaro, M. Bersani, D. Giubertoni, A. Möller, H. Bracht, J. Vac. Sci. Technol. B 26, 430 (2008)

    Article  CAS  Google Scholar 

  80. G. Contreras, L. Tapfer, A.K. Sood, M. Cardona, Phys. Stat. Sol. (B) 131, 475 (1985)

    Article  CAS  Google Scholar 

  81. P. Tsouroutas, D. Tsoukalas, A. Florakis, I. Zergioti, A.A. Serafetinides, N. Cherkashin, B. Marty, A. Claverie, Mater. Sci. Semicond. Process. 9, 644 (2006)

    Article  CAS  Google Scholar 

  82. R.N. Lovyagin, L.S. Smirnov, V.F. Stas', Sov. Microelectron. 14, 115 (1985)

    Google Scholar 

  83. G.S. Hubbard, E.E. Haller, W.L. Hansen, IEEE Trans. Nucl. Sci. NS-24, 161 (1977)

    Article  ADS  Google Scholar 

  84. S. Furuno, K. Izui, H. Otsu, Jpn. J. Appl. Phys. 15, 889 (1976)

    Article  ADS  CAS  Google Scholar 

  85. C. Ferreira.A. Lima, A. Howie, Phil. Mag. 34, 1057 (1976)

    Article  ADS  Google Scholar 

  86. S. Takeda, S. Muto, M. Hirata, Mater. Sci. Forum 83–87, 309 (1992)

    Article  Google Scholar 

  87. G.S. Anderson, G.K. Wehner, J. Appl. Phys. 31, 2305 (1960)

    Article  ADS  CAS  Google Scholar 

  88. T. Akatsu, K.K. Bourdelle, C. Richtarch, B. Faure, F. Letertre, Appl. Phys. Lett. 86, 181910/1–3 (2005)

    Article  CAS  Google Scholar 

  89. K.K. Bourdelle, In, Proc. of the Int. Symp. on Silicon-on-Insulator Technology and Devices XII, ed. by G.K. Celler, Cristoloveanu S, J.G. Fossum, Gámiz F, Izumi K, The Electrochem. Soc. Proc. 2005–03, p 167 (2005)

    Google Scholar 

  90. A. Bacchilega, P. Gondi, G.F. Missiroli, Il Nuovo Cimento 40B, 309 (1965)

    ADS  Google Scholar 

  91. H.J. Stein, J. Electrochem. Soc. 121, 1073 (1974)

    Article  CAS  Google Scholar 

  92. T.P. Sjoreen, N.M. Ravindra, M.K. El-Ghor, D. Fathy, Mater. Res. Soc. Symp. Proc. 107, 137 (1988)

    CAS  Google Scholar 

  93. N.M. Ravindra, T. Fink, W. Savin, T.P. Sjoreen, R.L. Pfeffer, L.G. Yerke, R.T. Lareau, J.G. Gualtieri, R. Lux, C. Wrenn, Nucl. Instrum. Methods Phys. Res. B 46, 409 (1990)

    Article  ADS  Google Scholar 

  94. Q.-C.Zhang, J.C. Kelly, M.J. Kenny, Nucl. Instrum. Methods Phys. Res. B 47, 257 (1990)

    Article  ADS  Google Scholar 

  95. S.S. Lau, B.Y. Tsaur, M. von Allmen, J.W. Mayer, B. Stritzker, C.W. White, B. Appleton, Nucl. Instrum. Methods 182/183, 97 (1981)

    Article  Google Scholar 

  96. B.R. Appleton, O.W. Holland, D.B. Poker, J. Narayan, D. Fathy, Nucl. Instrum. Methods Phys. Res. B 7/8, 639 (1985)

    Article  ADS  Google Scholar 

  97. G.K. Wehner, J. Appl. Phys. 29, 217 (1958)

    Article  ADS  CAS  Google Scholar 

  98. N. Laegreid, G. Wehner, B. Meckel, J. Appl. Phys. 30, 374 (1959)

    Article  ADS  CAS  Google Scholar 

  99. R.L. Jacobson, G.K. Wehner, J. Appl. Phys. 36, 2674 (1965)

    Article  ADS  CAS  Google Scholar 

  100. G.S. Anderson, J. Appl. Phys. 37, 2838 (1966)

    Article  ADS  CAS  Google Scholar 

  101. G.S. Anderson, J. Appl. Phys. 38, 1607 (1967)

    Article  ADS  CAS  Google Scholar 

  102. S.W. Robey, A.A. Bright, G.S. Oehrlein, S.S. Iyer, S.L. Delage, J. Vac. Sci. Technol. B 6, 1650 (1988)

    Article  CAS  Google Scholar 

  103. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  104. M. Bertolotti, F. de Pasquale, P. Marietti, D. Sette, G. Vitali, J. Appl. Phys. 38, 4088 (1967)

    Article  ADS  CAS  Google Scholar 

  105. M. Bertolotti, P. Marietti, D. Sette, L. Stagni, G. Vitali, Rad. Eff. 1, 161 (1969)

    Article  CAS  Google Scholar 

  106. M. Bertolotti, D. Sette, L. Stagni, G. Vitali, J. Appl. Phys. 41, 818 (1970)

    Article  ADS  CAS  Google Scholar 

  107. S.K. Gulati, W.W. Grannemann, J. Appl. Phys. 48, 3024 (1977)

    Article  ADS  CAS  Google Scholar 

  108. R. Andrew, M. Lovato, J. Appl. Phys. 50, 1142 (1979)

    Article  ADS  CAS  Google Scholar 

  109. G. Vitali, M. Marinelli, U. Zammit, F. Scuderi, Appl. Phys. A 35, 233 (1984)

    Article  ADS  Google Scholar 

  110. M. Mulato, D. Toet, G. Aichmayr, P.V. Santos, I. Chambouleyron, Appl. Phys. Lett. 70, 3570 (1997)

    Article  ADS  CAS  Google Scholar 

  111. J. Siegel, J. Solis, C.N. Afonso, J. Appl. Phys. 84, 5531 (1998)

    Article  ADS  CAS  Google Scholar 

  112. A. Cavalleri, C.W. Siders, C. Rose-Petruck, R. Jiminez, C.S. Tóth, J.A. Squier, C.P.J. Barty, K.R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, Phys. Rev. B 63, 193306/1–4 (2001)

    Article  CAS  Google Scholar 

  113. F. Vega, J. Solis, J. Siegel, C.N. Afonso, J. Appl. Phys. 88, 6321 (2000)

    Article  ADS  CAS  Google Scholar 

  114. J. Siegel, J. Solis, C.N. Afonso, F. Vega, J. Bankmann, O. Martínez Sacristán, K. Sokolowski-Tinten, J. Appl. Phys. 89, 3642 (2001)

    Article  ADS  CAS  Google Scholar 

  115. F. Vega, N. Chaoui, J. Solis, J. Armengol, C.N. Afonso, J. Appl. Phys. 97, 103519/1–6 (2005)

    Article  CAS  Google Scholar 

  116. Q.-Y. Tong, K. Gutjahr, S. Hopfe, U. Gösele, T.-H. Lee, Appl. Phys. Lett. 70, 1390 (1997)

    Article  ADS  CAS  Google Scholar 

  117. S.W. Bedell, W.A. Lanford, J. Appl. Phys. 90, 1138 (2001)

    Article  ADS  CAS  Google Scholar 

  118. Y.-L. Chao, R. Scholz, M. Reiche, U. Gösele, J.C.S. Woo, Jpn J. Appl. Phys. 45, 8565 (2006)

    Article  ADS  CAS  Google Scholar 

  119. M.L. David, F. Pailloux, D. Babonneau, M. Drouet, J.F. Barbot, E. Simoen, C. Claeys, J. Appl. Phys. 102, 096101/1–3 (2007)

    Article  CAS  Google Scholar 

  120. M. Hiller, E.V. Lavrov, J. Weber, Phys. Rev. B 71, 0452081/5 (2005)

    Article  CAS  Google Scholar 

  121. J. Lauwaert, M.L. David, M.F. Beaufort, E. Simoen, D. Depla, P. Clauws, Mater. Sci. Semicond. Process 9, 571 (2006)

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Process-Induced Defects in Germanium. In: Claeys, C., Simoen, E. (eds) Extended Defects in Germanium. Springer Series in Materials Science, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85614-6_5

Download citation

Publish with us

Policies and ethics