Skip to main content

Classification of Sporadic and BRCA1 Ovarian Cancer Based on a Genome-Wide Study of Copy Number Variations

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Abstract

Motivation: Although studies have shown that genetic alterations are causally involved in numerous human diseases, still not much is known about the molecular mechanisms involved in sporadic and hereditary ovarian tumorigenesis.

Methods: Array comparative genomic hybridization (array CGH) was performed in 8 sporadic and 5 BRCA1 related ovarian cancer patients.

Results: Chromosomal regions characterizing each group of sporadic and BRCA1 related ovarian cancer were gathered using multiple sample hidden Markov Models (HMM). The differential regions were used as features for classification. Least Squares Support Vector Machines (LS-SVM), a supervised classification method, resulted in a leave-one-out accuracy of 84.6%, sensitivity of 100% and specificity of 75%.

Conclusion: The combination of multiple sample HMMs for the detection of copy number alterations with LS-SVM classifiers offers an improved methodological approach for classification based on copy number alterations. Additionally, this approach limits the chromosomal regions necessary to distinguish sporadic from hereditary ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37(Suppl.), 11–17 (2005)

    Article  Google Scholar 

  2. Lai, W.R., Johnson, M.D., et al.: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21(19), 3763–3770 (2005)

    Article  Google Scholar 

  3. Shah, S., Lam, W.L., et al.: Modeling recurrent DNA copy number alterations in array CGH data. Bioinformatics 23, i450–i458 (2007)

    Article  Google Scholar 

  4. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  5. Pochet, N., De Smet, F., et al.: Systematic benchmarking of microarray data classification: assessing the role of nonlinearity and dimensionality reduction. Bioinformatics 20, 3185–3195 (2004)

    Article  Google Scholar 

  6. Suykens, J.A.K., Van Gestel, T., et al.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  7. Gajewski, W., Legare, R.D.: Ovarian cancer. Surg. Oncol. Clin. N. Am. 7, 317–333 (1998)

    Google Scholar 

  8. Burke, W., Daly, M., et al.: Recommendations for follow-up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. J. Am. Med. Assoc. 277, 997–1003 (1997)

    Article  Google Scholar 

  9. Shah, S., Xuan, X., et al.: Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics 22(14), e431–e439 (2006)

    Article  Google Scholar 

  10. Schölkopf, B., Tsuda, K., et al.: Kernel methods in computational biology. MIT Press, United States (2004)

    Google Scholar 

  11. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Saeys, Y., Inza, I., et al.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  13. Lai, C., Reinders, M.J.T., et al.: A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets. BMC Bioinformatics 7, 235–244 (2006)

    Article  Google Scholar 

  14. Yang, Y.H., Xiao, Y., et al.: Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 21(7), 1084–1093 (2005)

    Article  Google Scholar 

  15. Li, W., Yang, Y.: How many genes are needed for a discriminant microarray data analysis. In: Lin, S.M., Johnson, K.F. (eds.) Methods of Microarray Data Analysis, pp. 137–150. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daemen, A. et al. (2008). Classification of Sporadic and BRCA1 Ovarian Cancer Based on a Genome-Wide Study of Copy Number Variations. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85565-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85564-4

  • Online ISBN: 978-3-540-85565-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics