Skip to main content

Molecular Models to Emulate Confinement Effects on the Internal Dynamics of Organophosphorous Hydrolase

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5167))

Included in the following conference series:

Abstract

The confinement of the metalloenzyme organophosphorous hydrolase in functionalized mesoporous silica (FMS) enhances the stability and increases catalytic specific activity by 200% compared to the enzyme in solution. The mechanism by which these processes take place is not well understood. We have developed macroscopic and coarse-grain models of confinement to provide insights into how the nanocage environment steers enzyme conformational dynamics towards enhanced stability and enzymatic activity. The structural dynamics of organophosphorous hydrolase under the two confinement models are very distinct from each other. Comparisons of the present simulations show that only one model leads to an accurate depiction of the internal dynamics of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao, L.: Immobilized Enzymes: science or art. Current Opinion in Chemical Biology 9, 217–226 (2005)

    Article  Google Scholar 

  2. Lei, C., Shin, Y., Liu, J., Ackerman, E.J.: Entrapping enzyme in a functionalized nanoporous support. Journal of the American Chemical Society 124, 11242–11243 (2002)

    Article  Google Scholar 

  3. Omburo, G.A., Kuo, J.M., Mullins, L.S., Raushel, F.M.: Characterization of the zinc binding site of bacterial phosphotriesterase. Journal of Biological Chemistry 267, 13278–13283 (1992)

    Google Scholar 

  4. Rochu, D., Renault, F., Viguille, N., Crouzier, D., Froment, M.T., Masson, P.: Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence. Biochemical Journal 380, 627–633 (2004)

    Article  Google Scholar 

  5. Raushel, F.M.: Bacterial detoxification of organophosphate nerve agents. Current Opinion in Microbiology 5, 288–295 (2002)

    Article  Google Scholar 

  6. Bismuto, E., Martelli, P.L., Maio, A.D., Mita, D.G., Irace, G., Casadio, R.: Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers 67, 85–95 (2002)

    Article  Google Scholar 

  7. Bolis, D., Politou, A.S., Kelly, G., Pastore, A., Temussi, P.A.: Protein stability in nanocages: a novel approach for influencing protein stability by molecular confinement. Journal of Molecular Biology 336, 203–212 (2004)

    Article  Google Scholar 

  8. Eggers, D.K., Valentine, J.S.: Molecular confinement influences protein structure and enhances thermal stability. Protein Science 10, 250–261 (2001)

    Article  Google Scholar 

  9. Lei, C., Shin, Y., Liu, J., Ackerman, E.J.: Synergetic effects of nanoporous support and urea on enzyme activity. Nano Letters 7, 1050–1053 (2007)

    Article  Google Scholar 

  10. Lei, C., Soares, T.A., Shin, Y., Liu, J., Ackerman, E.J.: Enzyme specific activity in functionalized nanoporous supports Nanotechnology, vol. 19, pp. 125102–125111 (2008)

    Google Scholar 

  11. Lucent, D., Vishal, V., Pande, V.S.: Protein folding under confinement: A role for solvent. Proceedings of the National Academy of Sciences USA 104, 10430–10434 (2007)

    Article  Google Scholar 

  12. Minton, A.P.: The influence of macromolecular crowding on HIV-1 protease internal dynamics. Proceedings of the National Academy of Sciences USA 276, 10577–10580 (2001)

    Google Scholar 

  13. Thurmalai, D., Klimov, D.K., Lorimer, G.H.: Caging helps proteins fold. Proceedings of the National Academy of Sciences USA 100, 11195–11197 (2003)

    Article  Google Scholar 

  14. Zhou, H.X., Dill, K.A.: Stabilization of proteins in confined spaces. Biochemistry 40, 11289–11293 (2001)

    Article  Google Scholar 

  15. Klimov, D.K., Newfield, D., Thirumalai, D.: Simulations of beta-hairpin folding spherical pores using distributed computing. Proceedings of the National Academy of Sciences USA 99, 8019–8024 (2002)

    Article  Google Scholar 

  16. Takagi, F., Koga, N., Takada, S.: How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: Molecular simulations. Proceedings of the National Academy of Sciences USA 100, 11367–11372 (2003)

    Article  Google Scholar 

  17. Lu, D., Liu, Z., Wu, J.: Structural transitions of confined model proteins: molecular dynamics simulation and experimental validation. Biophysical Journal 90, 3224–3238 (2006)

    Article  Google Scholar 

  18. Rathore, N., Knotts-IV, T.A., de Pablo, J.J.: Confinement effects on the thermodynamics of protein folding: Monte Carlo simulations. Biophysical Journal 90, 1767–1773 (2006)

    Article  Google Scholar 

  19. Soares, T.A., Osman, M., Straatsma, T.P.: Molecular dynamics of organophosphorous hydrolases bound to the nerve agent soman. Journal of Chemical Theory and Computation 3, 1569–1579 (2007)

    Article  Google Scholar 

  20. Benning, M.M., Hong, S.B., Raushel, F.M., Holden, H.M.: The binding of substrate analogs to phosphotriesterase. Journal of Biological Chemistry 275, 30556–30560 (2000)

    Article  Google Scholar 

  21. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, W., Kollman, P.A.: A second generation force field for the simulation of proteins and nucleic acids. Journal of the American Chemical Society 117, 5179–5197 (1995)

    Article  Google Scholar 

  22. Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A.: Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences USA 98, 10037–10041 (2001)

    Article  Google Scholar 

  23. Mustata, G.I., Soares, T.A., Briggs, J.M.: Molecular dynamics studies of alanine racemase: A structural model for drug design. Biopolymers 70, 186–200 (2003)

    Article  Google Scholar 

  24. Soares, T.A., Lins, R.D., Straatsma, T.P., Briggs, J.M.: Internal dynamics and ionization states of the macrophage migration inhibitory factor: Comparison between wild-type and mutant forms. Biopolymers 65, 313–323 (2002)

    Article  Google Scholar 

  25. Bylaska, E.J., Jong, W.A.d., Kowalski, K., Straatsma, T.P., Valiev, M., Wang, D., Aprà, E., Windus, T.L., Hirata, S., Hackler, M.T., Zhao, Y., Fan, P.-D., Harrison, R.J., Dupuis, M., Smith, D.M.A., Nieplocha, J., Tipparaju, V., Krishnan, M., Auer, A.A., Nooijen, M., Brown, E., Cisneros, G., Fann, G.I., Frücht, H., Garza, J., Hirao, K., Kendall, R., Nichols, J.A., Tsemekhman, K., Wolinsk, K., Anchell, J., Bernholdt, D., Borowski, P., Clark, T., Clerc, D., Dachsel, H., Deegan, M., Dyall, K., Elwood, D., Glendening, E., Gutowski, M., Hess, A., Jaffe, J., Johnson, B., Ju, J., Kobayashi, R., Kutteh, R., Lin, Z., Littlefield, R., Long, X., Meng, B., Nakajima, T., Niu, S., Pollack, L., Rosing, M., Sandrone, G., Stave, M., Taylor, H., Thomas, G., Lenthe, J.v., Wong, A., Zhang, Z.: NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.0. Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA (A modified version) (2006)

    Google Scholar 

  26. Lindahl, E., Hess, B., Spoel, D.v.d.: GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7, 306–317 (2001)

    Google Scholar 

  27. García, A.E.: Large-amplitude nonlinear motions in proteins. Physical Review Letters 68, 2696–2699 (1992)

    Article  Google Scholar 

  28. Boehr, D.D., Dyson, H.J., Wright, P.E.: An NMR Perspective on Enzyme Dynamics. Chemical Reviews 106, 3055–3079 (2006)

    Article  Google Scholar 

  29. Whitten, S.T., Garcia-Moreno, E.B., Hilser, V.J.: Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proceedings of the National Academy of Sciences USA 102, 4282–4287 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ana L. C. Bazzan Mark Craven Natália F. Martins

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomes, D.E.B., Lins, R.D., Pascutti, P.G., Straatsma, T.P., Soares, T.A. (2008). Molecular Models to Emulate Confinement Effects on the Internal Dynamics of Organophosphorous Hydrolase. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2008. Lecture Notes in Computer Science(), vol 5167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85557-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85557-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85556-9

  • Online ISBN: 978-3-540-85557-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics