Skip to main content

Phenotyping for Root Traits and Their Improvement Through Biotechnological Approaches for Sustaining Crop Productivity

  • Chapter
  • First Online:
Root Genomics

Abstract

Primitive life perhaps evolved about 3.8 billion years ago in a predominantly “reducing” atmosphere composed of methane, CO2 and hydrogen peroxide, and most microorganisms of the pre-Cambrian era were anaerobic. The multitude of organisms, predominantly bacteria (Monera), which were heterotrophs, gradually exhausted all the organic resources and life would have cannibalized to extinction but for the appearance of a new type of organism that could prepare their own food. These organisms gradually developed abilities to derive energy from sunlight and the electrons from oxidation of water. With the evolution of the ability of water oxidation, the atmosphere started becoming an “oxidizing” atmosphere around 2.5 and 1.6 billion years ago. This also coincided with the aridity in air, and plants started inhabiting arid lands. Although these “photo autotrophs” were capable of utilizing the almost unlimited energy source from the sun, their growth was constrained by water and nutrient availability in the terrestrial ecosystems. Being sessile, plants had to evolve superior mechanisms to cope with the harsh climatic conditions on land. Evolution of roots represents one of the most spectacular developments that helped plants to cope with these harsh and arid climatic conditions. The root system, which determined the survival of terrestrial plants in such conditions, is hence one of the most important and spectacular evolutionary developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Kheir E, Sheshshyee MS, Udayakumar M, Prasad TG (2008) Assessing the genetic variability in whole plant WUE and associated physiological traits in cotton. Paper presented at AAB International Conference on “Resource Capture by Crops: Integrated Approach”, University of Nottingham, Sutton Bonington Campus, 14–16 September

    Google Scholar 

  • Agre P, Bonhivers M, Borgnia MJ (1998) The aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273:14659–14662

    CAS  PubMed  Google Scholar 

  • Angus JF, Van Herwerdeen AF (2001) Increasing water use and water-use efficiency in dry land wheat. Agron J 93:290–298

    Google Scholar 

  • Annicchiarico P, Piano E (2004) Indirect selection for root development of white clover and implication for drought tolerance. J Agron Crop Sci 190:28–34

    Google Scholar 

  • Armenta-Soto J, Chang TT, Loresto GC, O’Toole JC (1983) Genetic analysis of root characters in rice. SABRAO 15:103–116

    Google Scholar 

  • Assaeed AM, McGowan M, Hebblethwaite PD, Brereton JC (1990) Effect of soil compaction on growth, yield and light interception of selected crops. Ann Appl Biol 117:653–666

    Google Scholar 

  • Ayyappa R (2004) Identification of molecular markers for WUE and associated traits in RILs of Rice (Oryza sativa). MSc thesis, University of Agricultural Science, Bangalore, India

    Google Scholar 

  • Bastola DR, Pethe VV, Winicov I (1998) Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol 38:1123–1135

    CAS  PubMed  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97:248–253

    Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    CAS  PubMed  Google Scholar 

  • Bhalerao RP, Eklöf J, Ljung K, Marchant A, Bennett MJ, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    CAS  PubMed  Google Scholar 

  • Bindu MH, Sheshshayee MS, Devendra R, Prasad TG, Udayakumar M (1999) Oxygen (18O) isotopic enrichment in the leaves as a potential surrogate for transpiration and stomatal conductance. Curr Sci 76:1427–1428

    Google Scholar 

  • Blakely LM, Evans TA (1979) Cell dynamics studies on the pericycle of radish seedling roots. Plant Sci Lett 14:79–83

    CAS  Google Scholar 

  • Blakely LM, Blakely RM, Colowit PM, Elliott DS (1988) Experimental studies on lateral root formation in radish seedling roots. Plant Physiol 87:414–419

    CAS  PubMed  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC Press, Boca Raton, FL

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency and yield potential – are they compatible, dissonant or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerized analysis of root length and diameter. Plant Soil 218:185–196

    CAS  Google Scholar 

  • Brewig A (1937) PermeabilitaÈ tsaÈnderungen der Wurzelgewebe, die vom Spross beein¯usst werden. Z fuÈ r Bot 31:481–540

    Google Scholar 

  • Brouwer R (1954) The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Acta Bot Neerl 3:264–312

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Google Scholar 

  • Buhay WM, Edwards TWD, Aravena R (1996) Evaluating kinetic fractionation factors used for ecologic and paleoclimatic reconstructions from oxygen and hydrogen isotope ratios in plant water and cellulose. Geochim Cosmochim Acta 60:2209–2218

    CAS  Google Scholar 

  • Busscher WJ, Sojka RE, Doty CW (1986) Residual effects of tillage on coastal plain soil strength. Soil Sci 141:144–148

    Google Scholar 

  • Camp CR, Christenbury GD, Doty CW (1984) Tillage effects on crop yield in coastal plain soils. Trans ASAE 27:1729–1733

    Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    CAS  PubMed  Google Scholar 

  • Casson SA, Lindsey K (2003) Genes and signaling in root development. New Phytol 158:11–38

    CAS  Google Scholar 

  • Chahine KG, Walke WD, Goldman DA (1992) 102 base pair sequence of the nicotinic acetylcholine receptor delta-subunit gene confers regulation by muscle electrical activity. Development 115:213–219

    CAS  PubMed  Google Scholar 

  • Champoux MC, Wang G, Sarkarung S, Mackill DJ, O’Toole JC, Huang N, McCouch SR (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    CAS  Google Scholar 

  • Chang TT, Loresto GC, O’Toole JC, Amenta-Soto JL (1982) Strategy and methodology of breeding rice for drought-prone areas. Drought resistance in crops with emphasis on rice. IRRI, Los Basnos, Philippines

    Google Scholar 

  • Coates JC, Laplaze L, Haseloff J (2006) Armadillo-related proteins promote lateral root development in Arabidopsis. Proc Natl Acad Sci USA 103:1621–1626

    CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    CAS  PubMed  Google Scholar 

  • Condon AG, Richards RA, Farquhar GD (1993) Relationships between carbon isotope discrimination, water use efficiency and transpiration efficiency for dry land wheat. Aust J Agric Res 44:1693–1711

    CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water use efficiency. J Exp Bot 55:2447–2460

    CAS  PubMed  Google Scholar 

  • Cook CG (1985) Identifying root traits among MAR and NON-MAR cotton, Gossypium hirsutum L. cultivars that relate to performance under limited moisture conditions. M.S. Thesis, Texas A&M University, College Station, TX

    Google Scholar 

  • Courtois B, Mcloren G, Sinha PK, Prasad K, Yadav R, Shen L (2000) Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding 6:55–66

    Google Scholar 

  • Craig L, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: E Tongiorgi (ed) Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures, Spoleto, Italy, pp 9–130

    Google Scholar 

  • Cubero B, Nakagawa Y, Yu X, Ken J, Miura J, Li F, Raghothama KG, Bressan RA, Hasegawa PM, Pardo JM (2009) The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the golgi apparatus of Arabidopsis. Mol Plant 2(3):535–552. doi: 10.1093

    CAS  PubMed  Google Scholar 

  • De Smet I, Tetsumura T, De Rybel B, Frei Dit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

    PubMed  Google Scholar 

  • Dean G, Casson S, Lindsey K (2004) KNAT6 gene of Arabidopsis is expressed in roots and is required for correct lateral root formation. Plant Mol Biol 54:71–84

    CAS  PubMed  Google Scholar 

  • DeNiro MJ, Epstein S (1979) Relationship between oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water. Science 204:51–53

    CAS  PubMed  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007a) Phosphate homeostasis and root development in Arabidopsis are synchronized by the Zinc finger transcription factor, ZAT6. Plant Physiol 145:147–159

    CAS  PubMed  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007b) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    CAS  PubMed  Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis yellow stripe- like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    CAS  PubMed  Google Scholar 

  • Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y (2006) An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol 60:122–133

    Google Scholar 

  • Drouet JL, Pagès L, Serra V (2005) Dynamics of leaf mass per unit leaf area and root mass per unit root volume of young maize plants: implications for growth models. Eur J Agron 22:185–193

    Google Scholar 

  • Ekanayake IJ, O’Toole JC, Garrity DP, Masajo TM (1985) Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25:927–933

    Google Scholar 

  • Elick JM, Driese SG, Mora CI (1998) Very large plant and root traces from the early to middle devonian: implications for early terrestrial ecosystems and atmospheric p(CO2). Geology 26:143–146

    CAS  Google Scholar 

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 47–70

    Google Scholar 

  • Farquhar GD, Cernusak LC, Barnes B (2007) Heavy water fractionation during transpiration. Plant Physiol 143:1–8

    Google Scholar 

  • Flanagan LB, Bain JF, Ehleringer JR (1991) Stable oxygen and hydrogen isotope composition of leaf water in C3 and C4 plant species under field conditions. Oecologia 88:394–400

    Google Scholar 

  • Flanagan LB, Philips SL, Ehleringer JR, Farquhar GD (1994) Effect of changes in leaf water oxygen isotopic composition on discrimination against C18O16O during photosynthetic gas exchange. Aust J Plant Physiol 21:221–234

    Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002) AtPIN4 mediates sink driven auxin gradients and patterning in Arabidopsis roots. Cell 108:661–673

    CAS  PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

    CAS  PubMed  Google Scholar 

  • Fukaki H, Okushima Y, Tasaka M (2007) Auxin-mediated lateral root formation in higher plants. Int Rev Cytol 256:113–137

    Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    CAS  PubMed  Google Scholar 

  • Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong T (2004) Over expression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants including altered leaf, flower and root development and root response to gravity. Plant Physiol 135:1502–1513

    PubMed  Google Scholar 

  • Gensel PG, Kotyk ME, Basinger JF (2001) Morphology of above- and below-ground structures in early Devonian (pragian-Emsian) plants. In: Edwards D, Gensel PG (eds) Plants invade the land. Columbia University Press, New York, pp 83–102

    Google Scholar 

  • Giuliani S, Sanguineti MS, Tuberosa R, Bellotti M, Salvi S, Landi P (2005) Root-ABA1, a major constitutive QTL affects maize root architecture and leaf ABA concentration at different water regimes. J Exp Bot 56:3061–3070

    CAS  PubMed  Google Scholar 

  • Gonfiantini R, Gratziu S, Tongiorgi E (1965) Oxygen isotopic composition in leaves. In: Use of isotopes and radiations in soil-plant nutrition studies. Tech Rep Ser No. 206. Isotopic Atomic energy Commission, Vienna, pp 405–410

    Google Scholar 

  • Gray WM, Del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    CAS  PubMed  Google Scholar 

  • Groff PA, Kaplan DR (1988) The relation of root systems to shoot systems in vascular plants. Bot Rev 54:387–422

    Google Scholar 

  • Hase Y, Tanaka A, Baba T, Watanabe H (2000) FRL1 is required for petal and sepal development in Arabidopsis. Plant J 24:21–32

    CAS  PubMed  Google Scholar 

  • Hasegawa S, Thangaraj M, O’Toole JC (1985) Root behavior: field and laboratory studies. In: International Rice Research Institute (ed) Soil physics and rice. International Rice Research Institute, Manila, Philippines, pp 383–393

    Google Scholar 

  • Hawker NP, Bowman JL (2004) Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270

    CAS  PubMed  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    CAS  PubMed  Google Scholar 

  • Ingram K, Bueno TFD, Namuco OS, Yambao EB, Beyrouty CA (1994) Rice root traits for drought resistance and their genetic variation. In: Kirk GJD (ed) Rice roots: nutrient and water use. IRRI, Los Banos, Philippines, pp 67–77

    Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. Plant Cell 17:1387–1396

    CAS  PubMed  Google Scholar 

  • IPCC (Intergovernmental Planet on Climate Change) 2007. Climate change 2007: Impacts, Adaptation and vulnerability, Geneva: IPCC secretariat

    Google Scholar 

  • Ivashuta S, Liu J, Lohar DP, Haridas S, Bucciarelli B, VandenBosch K, Vance CP, Harrison MJ, Gantt JS (2005) RNA interference identifies a calcium dependant protein kinase involved in Medicago truncatulata root development. Plant Cell 17:2911–2921

    CAS  PubMed  Google Scholar 

  • Jenks MA, Hasegawa PM, Mohan Jain S (2007) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Jupp AP, Newman EI (1987) Morphological and anatomical effects of severe drought to the roots of Lolium perenne L. New Res Phytol 7:587–593

    Google Scholar 

  • Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M (2003) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent centre in the root apical meristem. Plant J 35:429–441

    CAS  PubMed  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nadaraja KN, Udayakumar M, Pereira A (2007) Improvement of water-use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerant gene. Proc Natl Acad Sci USA 104(39):15270–15275

    CAS  PubMed  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V, Rachid S (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 91:213–222

    Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R (2006) Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res 95:171–181

    Google Scholar 

  • Khalilian A, Hood CE, Palmer JH, Garner TH, Bathke GR (1991) Soil compaction and crop response to wheat-soybean interesting. Trans ASAE 34:2299–2303

    Google Scholar 

  • Landi P, Sanguineti MS, Liu C, Li Y, Wang TY, Giuliani S, Bellotti M, Salvi S, Tuberosa R (2007) Root – ABA1 QTL affects lodging, grain yield and other agronomic traits in maize growing under well watered and water stressed conditions. J Exp Bot 58:319–326

    CAS  PubMed  Google Scholar 

  • Lee SH, Ahsana N, Lee KW, Kim BH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous over expression of both CuZn super oxide dismutase and Ascorbate peroxidase in transgenic tall fescue plants conforms increased tolerance to a wide range of abiotic stress. J Plant Physiol 164:1626–1638

    CAS  PubMed  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York, USA, p 607

    Google Scholar 

  • Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110(7):1244–1252

    CAS  PubMed  Google Scholar 

  • Liu HJ, Wang SF, Yu XB, Yu J, He XW, Zheng SL, Shou HX, Wu P (2005) ARL1. a LOB domain protein required for adventitious root formation in Rice. Plant J 43:47–56

    PubMed  Google Scholar 

  • Liu J, Versaw WK, Pumplin N, Gomez SK, Blaylock LA, Harrison MJ (2008) Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem 283:24673–24681

    CAS  PubMed  Google Scholar 

  • Lopz-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) Role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Google Scholar 

  • Lucas M, Godin C, Jay-Allemand C, Laplazel L (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66

    CAS  PubMed  Google Scholar 

  • Ludlow MM (1993) Physiological mechanisms of drought resistance. In: Biotechnology for aridland plants, IC2 Institute, UT Austin, pp 369

    Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Google Scholar 

  • Ludlow MM, Sommer KJ, Flower DJ, Ferraris R, So HB (1989) Influence of root signals resuUing from soil dehydration and high soil strength on the growth of crop plants. Curr Top Plant Biochem Physiol 8:81–99

    Google Scholar 

  • MacMillan K, Emrich K, Biebho HB, Mullins CE, Price AH (2006) Assessing the importance of genotype x environment interactions for root traits in rice using mapping population. 1: A soil-filled screen. Theor Appl Genet 113:977–986

    CAS  PubMed  Google Scholar 

  • Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems evidence for a channel-mediated water pathway. Plant Physiol 109:331–335

    CAS  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    CAS  PubMed  Google Scholar 

  • Mambani B, Lai R (1983) Response of upland rice varieties to drought stress II. Screening rice varieties by means of variable moisture regimes along a top sequence. Plant Soil 73:73–94

    Google Scholar 

  • Martinez F, Merino O, Garcia MD, Merino JA (1998) Belowground structure and production in a Mediterranian shrub community. Plant Soil 201:209–216

    Google Scholar 

  • Masle J (1992) Genetic variation in the effects of root impedance on the growth and transpirafion rates of wheat and barley. Aust J Plant Physiol 19:109–125

    Google Scholar 

  • Masle J, Passioura JB (1987) The effect of soil strength on the growth of young wheat plants. Aust J Plant Physiol 14:643–656

    Google Scholar 

  • Matsui T, Singh BB (2003) Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agric 39:29–38

    Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins: a molecular entry into plant water relations. Plant Physiol 125:135–138

    CAS  PubMed  Google Scholar 

  • Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102:7760–7765

    CAS  PubMed  Google Scholar 

  • Muday GK, DeLong A (2001) Polar upstream transport controlling where and how much. Trends Plant Sci 6:535–542

    CAS  PubMed  Google Scholar 

  • Nashimura R, Hayashi M, Guo-Jiang W, Hiroshi K, Hauko IA, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Google Scholar 

  • Nelson D, Repetti B, Adams T, Crelman R, Wu J, Warner D, Anstrom D, Bensen R, Castiglioni B, Donnarummo M et al (2007) Plant nuclear factor Y (NF-Y) B subunits conform drought tolerance and lead to improved corn yields on water limited acres. Proc Natl Acad Sci USA 104:16450–16455

    CAS  PubMed  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Aravidopsis floral bud formation. Plant Cell 3:677–684

    CAS  PubMed  Google Scholar 

  • O’Toole JC, Bland WL (1987) Genotypic variation in crop plant root systems. Adv Agron 41:91–145

    Google Scholar 

  • O’Toole JC, Chang TT (1979) Drought resistance in cereals – rice: A case study. In: Mussell H, Staples RC (eds) Stress physiology of crop plants. Wiley Interscience, New York, pp 374–405

    Google Scholar 

  • O’Toole JC, De Datta SK (1986) Drought resistance in rainfed lowland rice. Progress in rainfed rice. IRRI, Los Banos, Philippines, pp 145–158

    Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    PubMed  Google Scholar 

  • Passioura JB (1982) The role of root system characteristics in the drought resistance of crop plants. In: IRRI (ed) Drought resistance in crops with emphasis on rice. IRRI, Los Banos, Philippines, pp 71–82

    Google Scholar 

  • Passioura JB (1986) Resistance to drought and salinity: Avenues for improvement. Aust J Plant Physiol 13:191–201

    Google Scholar 

  • Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173

    CAS  PubMed  Google Scholar 

  • Plaut Z, Carmi A, Grava A (1996) Cotton root and shoot response to subsurface drip irrigation and partial wetting of the upper soil profile. Irrig Sci 16:107–113

    Google Scholar 

  • Price AH, Tomos AD, Virk DS (1997) Genetic dissection of root growth in rice (Oryza sativa L.) I: a hydrophonic screen. Theor Appl Genet 95(1–2):132–142

    Google Scholar 

  • Prior SA, Rogers HH, Runion GB, Kimball BA, Mauney JR, Lewin KF, Nagy J, HENDRY GR (1995) Free-air carbon dioxide enrichment of cotton: root morphological characteristics. J Environ Qual 24:678–683

    CAS  Google Scholar 

  • Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants: Role of hydraulic conductivity and turgor. Plant Physiol 69:771–775

    CAS  PubMed  Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381–401

    CAS  PubMed  Google Scholar 

  • Rebetzke GJ, Condon G, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rain-fed bread wheat. Crop Sci 42:122–127

    PubMed  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mendel T, Baltensberger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    CAS  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    CAS  PubMed  Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179

    PubMed  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    CAS  PubMed  Google Scholar 

  • Ribaut JM, Hoisington D, Banziger M, Setter T, Edmeades G (2004) Geneic dissection of drought tolerance in maize: a case study. In: Ribaut JM (ed) Physiology and biotechnology integration for plant breeding. Marcel Dekker, New York, pp 571–609

    Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, Van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    PubMed  Google Scholar 

  • Rivero RM, Kojima M, Gebstein A, Sakakibara H, Mittler R, Gebstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    CAS  PubMed  Google Scholar 

  • Saab IN, Sharp RR, Pritchard J, Voetberg GS (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329–1336

    CAS  PubMed  Google Scholar 

  • Sano T, Nagata T (2002) The possible involvement of phosphate –induced transcription factor encoded by Phi-2 gene from tobacco in ABA- signalling pathways. Plant Cell Physiol 43:12–20

    Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78

    CAS  PubMed  Google Scholar 

  • Sharma PK, Pantuwan G, Ingram KT, De Datta SK (1994) Rainfed lowland rice roots: soil and hydrological effects. In: Kirk GJD (ed) Rice roots: nutrient and water use. IRRI, Los Banos, Philippines, pp 55–56

    Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    CAS  PubMed  Google Scholar 

  • Sheshshayee MS, Bindumadhava H, Shankar AG, Prasad TG, Udayakumar M (2003) Breeding strategies to exploit water use efficiency for crop improvement. J Plant Biol 30(2):253–268

    Google Scholar 

  • Sheshshayee MS, Bindumadhava H, Ramesh R, Prasad R, Lakshminarayana MR, Udayakumar M (2005) Oxygen Isotope Enrichment (Δ18O) as a measure of time averaged transpiration rate. J Exp Bot 56:3033–3039

    CAS  PubMed  Google Scholar 

  • Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453

    CAS  PubMed  Google Scholar 

  • Shone MGT, Flood AV (1983) Effects of periods of localized water stress on subsequent nutrient uptake by barley roots and their adaptation by osmotic adjustment. New Phytol 94:561–572

    Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2 and APETALA2 family transcription factors from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123

    CAS  PubMed  Google Scholar 

  • Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agron J 93:263–270

    Google Scholar 

  • Smucker AJM, Nunez-Barrios A, Ritchie JT (1991) Root dynamics in drying soil environments. Belowground Ecol 2:4–5

    Google Scholar 

  • Steele KA, Price AH, Shashidhara HE, Witcombe JR (2006) Marker assisted selection to introgress rice QTL controlling root traits into an Indian upland rice variety. Theor Appl Genet 112:208–221

    CAS  PubMed  Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101:180–186

    Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    CAS  PubMed  Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    CAS  PubMed  Google Scholar 

  • Taylor HM, Upchurch DR, Brown JM, Rogers HH (1991) Some methods of root investigation. In: McMichael BL, Persson H (eds) Plant roots and their environment. Elsevier Science, New York

    Google Scholar 

  • Thangaraj M, O’Toole JC, De Datta SK (1990) Root response to water stress in rain fed lowland rice. Exp Agric 26:287–296

    Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58(5):778–790

    CAS  PubMed  Google Scholar 

  • Tu JC, Tan CS (1991) Effect on soil compaction on growth, yield and root rots of white beans in clay loam and sand loam soil. Soil Biol Biochem 23:233–238

    Google Scholar 

  • Tuberosa R, Sanguineti MS, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought stressed maize (Zea mays L.). Theor Appl Genet 97:744–755

    CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P et al (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48(5/6):697–712

    CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MS, Maccaferri M, Giuliani S, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    CAS  Google Scholar 

  • Udayakumar M, Rao RCN, Wright GC, Ramaswamy GC, Ashok RS, Gangadhar GC, Aftab Hussain IS (1998) Measurement of transpiration efficiency in field condition. J Plant Physiol Biochem 1:69–75

    Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds auxin response elements. Science 276:1865–1868

    CAS  PubMed  Google Scholar 

  • Van Beem J, Smith ME, Zobel RW (1998) Estimating root mass in maize using a portable capacitance meter. Agron J 90:566–570

    Google Scholar 

  • Vandeleur R, Niemietz C, Tilbrook J, Tyerman SD (2005) Plant Soil 274:141–161

    CAS  Google Scholar 

  • Venuprasad R, Shashidhar HE, Hittalmani S, Hemamalini GS (2002) Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L) under contrasting moisture regimes. Euphytica 128:293–300

    CAS  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

    CAS  PubMed  Google Scholar 

  • Weijers D, Jurgens G (2005) Auxin and embryo axis formation: the end in sight? Curr Opin Plant Biol 8:32–37

    CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492

    CAS  PubMed  Google Scholar 

  • White JWC, Lawrence JR, Broecker WS (1994) Modelling and interpreting D/H ratios in tree rings: a test case of white pine in the Northeastern United States. Geochim Cosmochim Acta 58:851–862

    CAS  Google Scholar 

  • Winicov I (1993) cDNA encoding putative zinc finger motifs from salt tolerant Alfalfa (Medicago sativa L.) cells. Plant Physiol 102:681–682

    CAS  PubMed  Google Scholar 

  • Winicov I (2000) Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta 210:416–422

    CAS  PubMed  Google Scholar 

  • Winicov I, Bastola DR (1999) Transgenic over expression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 Gene in Alfalfa and improves salinity tolerance of the plants. Plant Physiol 120:473–480

    CAS  PubMed  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of scarecrow function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    CAS  PubMed  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    CAS  PubMed  Google Scholar 

  • Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170

    CAS  PubMed  Google Scholar 

  • Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) FPF1 transgene leads to altered flowering time in root development in rice. Plant Cell Rep 24:79–85

    CAS  PubMed  Google Scholar 

  • Yadav R, Courtois B, Huang N, Mclaren G (1997) Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice. Theor Appl Genet 94:619–632

    CAS  Google Scholar 

  • Yang SH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycine betain enhances thermo tolerance of PSII in tobacco plants. Planta 225:719–733

    CAS  PubMed  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    CAS  PubMed  Google Scholar 

  • Yoshida S, Hasegawa S (1982) The rice root system: its development and function. In: IRRI (ed) Drought resistance in crops with emphasis on rice. IRRI, Manila, Philippines, pp 97–114

    Google Scholar 

  • Yu LX, Ray JD, O`Toole JC, Nguyen HT (1995) Use of wax-petrolatum layer for screening rice root penetration. Crop Sci 35:684–687

    Google Scholar 

  • Yusuf AM, Johansen C, Krishna Murthy L, Hamid A (2005) Genotypic variation in root systems of chickpea (Cicer arietinum L.) across environments. J Agron Crop Sci 191:464–472

    Google Scholar 

  • Zhang H, Forde B (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:751–760

    Google Scholar 

  • Zhang L, Cao W, Zhang S, Zhou Z (2005) Characterizing root growth and spatial distribution in cotton. Acta phytoecol Sci 29:266–273 (in Chinese with an English abstract)

    Google Scholar 

  • Zhao CX, Deng XP, Shan L, Steudle E, Zhang SQ, Ye Q (2005) Changes in root hydraulic conductivity during wheat evolution. J Integr Plant Biol 47:302–310

    Google Scholar 

  • Zheng-Xiang L, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199–207

    Google Scholar 

Download references

Acknowledgments

Most of the experiments carried out to assess genetic variability in root traits were supported by the Department of Biotechnology under the Center of Excellence Program support scheme and ICAR under the Niche Area of Excellence program. Graduate students Mr. Mohan Kumar MV (Rice), Mr. Rajashekar Reddy (Finger millet), Ms. Vinoda KS (Mulberry), and Mr. Vikram & Mr. Shashidhara (Sunflower) conducted root structure experiments. Technical help of Dr. J.N. Madhura, Research Scientist, and Nagabhushana, Lab assistant, while analyzing samples is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sheshshayee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Sheshshayee, M.S. et al. (2011). Phenotyping for Root Traits and Their Improvement Through Biotechnological Approaches for Sustaining Crop Productivity. In: Costa de Oliveira, A., Varshney, R. (eds) Root Genomics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85546-0_9

Download citation

Publish with us

Policies and ethics