Skip to main content

Root Responses to Major Abiotic Stresses in Flooded Soils

  • Chapter
  • First Online:
Root Genomics

Abstract

Soil flooding is a particular environment for chemical and biological reactions. Changes from the reduction of cations to increase in anaerobic microorganisms are all related in this ecosystem. The production of irrigated rice provokes similar changes since rice is irrigated by a water layer a few weeks after seeding. These changes generate products such as soluble iron and short-chain organic acids which, under proper conditions, can be toxic to rice. In order to achieve a perfect state of growth, plants must balance the presence of minerals at different concentrations and equate its needs. Among the major stresses faced by rice plants under no tillage cropping systems in South America, iron and organic acid toxicity top the list. Our understanding of such abiotic stresses is still incipient; with the discovery of a few transporters for iron, the picture starts to become more clear. For organic acids, however, little is known about the genetics of tolerance, although some results point out to genetic differences among rice genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abifarin AO (1988) Grain yield loss due to iron toxicity. West Africa Rice Development. Association Technical Newsletter 8:1–2

    Google Scholar 

  • Abraham MJ, Pandey DK (1989) Performance of selected varieties and advance generation genotypes in rainfed lowland iron toxic soil. Int Rice Res Newsl 14:21

    Google Scholar 

  • Abu MB, Tucker ES, Harding SS, Sesay JS (1989) Cultural practices to reduce iron toxicity in rice. Int Rice Res Newsl 14:19

    Google Scholar 

  • Allen BL, Hajek BF (1989) Mineral occurrence in soil environments. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 199–278

    Google Scholar 

  • Armstrong J, Armstrong W (2001) An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquat Bot 69:251–268

    CAS  Google Scholar 

  • Askwith C, Eide D, Van HA, Bernard PS, Li L et al (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410

    CAS  PubMed  Google Scholar 

  • Audebert A, Sahrawat KL (2000) Mechanisms for iron toxicity tolerance in lowland rice. J Plant Nutr 23:1877–1885

    CAS  Google Scholar 

  • Ayotade KA (1979) Reaction of some rice varieties to iron toxicity in flooded strongly acid ferralitic soil in Nigeria. West Afr Rice Dev Assoc Tech Newsl 1:11

    Google Scholar 

  • Bagnaresi P, Mazars-Marty D, Pupillo P, Marty F, Briat JF (2000) Tonoplast subcellular localization of maize cytochrome b5 reductases. Plant J 24:645–654

    CAS  PubMed  Google Scholar 

  • Balk J, Lobreaux S (2005) Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci 10:324–331

    CAS  PubMed  Google Scholar 

  • Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM (1992) Ferritin: a cytoprotective antioxidant stratagem of endothelium. J Biol Chem 267:18148–18153

    CAS  PubMed  Google Scholar 

  • Barbosa Filho MP, Dynia JF, Fageria NK (1994) Zinc and iron in the rice crop (in portuguese). EMBRAPA-SPI, Brasilia

    Google Scholar 

  • Bienfait HF (1985) Regulated redox process at the plasmalemma of plant root cells and their function on iron uptake. J Bioenergy Biomembr 17:73–83

    CAS  Google Scholar 

  • Bouzayen M, Felix G, Latché A, Pech JC, Boller T (1991) Iron: an essential cofactor for the conversion of 1-aminocy-clopropane-1-carboxylic acid to ethylene. Planta 184:244–247

    CAS  Google Scholar 

  • Brennan EW, Lindsay WL (1998) Reduction and oxidation effect on the solubility and transformation of iron oxides. Soil Sci Soc Am J 62:930–937

    CAS  Google Scholar 

  • Briat J-F, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193

    Google Scholar 

  • Briat J-F, Fobis-Loisy I, Grignon N, Lobréaux S, Pascal N et al (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81

    CAS  Google Scholar 

  • Briat J-F, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:1–7

    Google Scholar 

  • Brown CJ, Ambler JE, Chaney RL, Foy CD (1972) Differential responses of plant genotypes to micronutrients. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 389–418

    Google Scholar 

  • Camargo FA de O, Santos G de A, Rossielo ROP (1993) Efeito dos ácido acético e butírico sobre o crescimento de plântulas de arroz. Pesquisa Agropecuária Brasileira 28(9):1011–1018

    Google Scholar 

  • Camargo FA de O, Zonta E, Santos GA, Rossielo ROP (2001) Aspectos fisiológicos e caracterização da toxidez de ácidos orgânicos voláteis em plantas. Ciência Rural 31(3):523–529

    Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50:208–213

    CAS  PubMed  Google Scholar 

  • Cheema SS, Chaudhary U, Takkar PN, Sharma BD (1990) Effect of dates of transplanting on uptake of micronutrients by rice cultivars of different growth stages. J Res Punjab Agric Univ 27:199–206

    CAS  Google Scholar 

  • Clark RB (1983) Plant genotype differences in the uptake, translocation, accumulation and use of mineral elements required for plant growth. Plant Soil 72(2,3):175–196

    CAS  Google Scholar 

  • Connolly EL, Guerinot ML (2002) Iron stress in plants. Genome Biol 3:1024.1–1024.4

    Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    CAS  PubMed  Google Scholar 

  • Crestani M, da Silva JAG, Souza VQ, Hartwig I, Luche HS, Sousa RO, Carvalho FIFC, Costa de Oliveira A (2009) Irrigated rice genotype performance under excess iron stress in hydroponic culture. Crop Breed Appl Biotechnol 9:85–93

    Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    CAS  PubMed  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409:346–349

    CAS  PubMed  Google Scholar 

  • Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301

    CAS  PubMed  Google Scholar 

  • DiDonato R Jr, Roberts LA, Sanderson T, Eisley RB, Walker E (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    CAS  PubMed  Google Scholar 

  • Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) The FET4 gene encodes the low affinity Fe (II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269:26092–26099

    CAS  PubMed  Google Scholar 

  • Dix DR, Bridgham J, Broderius M, Eide DJ (1997) Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron. J Biol Chem 272:11770–11777

    CAS  PubMed  Google Scholar 

  • Douchkov D, Hell R, Stephan UW, Baumlein H (2001) Increased iron efficiency in transgenic plants due to ectopic expression of nicotianamine synthase. In: Horst WJ, Schenk MK, Burkert A, Claasen N, Flessa H, Frommer WB, Goldbach H, Olfs H, Romheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wiren Nv, Wittenmayer L (eds) Plant nutrition. Food security and sustainability of agro-ecosystems through basic and applied research. Kluwer, Dordrecht, pp 54–55

    Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    CAS  PubMed  Google Scholar 

  • Fageria NK (1984) Adubação e nutrição mineral da cultura do arroz. Campus, Rio de Janeiro

    Google Scholar 

  • Fageria NK (1988) Influence of iron on nutrient uptake by rice. Int Rice Res Newsl 13:20–21

    Google Scholar 

  • Fageria NK, Rabelo NA (1987) Tolerance of rice cultivars to iron toxicity. J Plant Nutr 10:653–661

    CAS  Google Scholar 

  • Fang W, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76

    CAS  PubMed  Google Scholar 

  • Fobis-Loisy I, Aussel L, Briat J-F (1996) Post-transcriptional regulation of plant ferritin accumulation in response to iron as observed in the maize mutant ysI. FEBS Lett 397:149–154

    CAS  PubMed  Google Scholar 

  • Fortes MA, Sousa RO, Schmidt F, Vahl LC (2008) Toxidez por ácido acético em arroz sob diferentes valores de pH da solução nutritiva. Ciênc Rural 38:1581–1588

    CAS  Google Scholar 

  • Furlani AMC, Bataglia OC, Azzini LE (1986) Variabilidade entre linhagens de arroz na absorção e utilização de potássio em solução nutritiva. Rev Bras Ciênc Solo 10:135–141

    CAS  Google Scholar 

  • Gendre D, Czernic P, Conejero G, Pianelli K, Briat J-F, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine Ni/Fe transporter. Plant J 49:1–15

    PubMed  Google Scholar 

  • Gross J, Stein RJ, Fett-Neto AG, Fett JP (2003) Iron homeostasis related genes in rice. Genet Mol Biol 26(4):477–497

    CAS  Google Scholar 

  • Grotz N, Guerinot ML (2002) Limiting nutrients: an old problem with new solutions? Curr Opin Plant Biol 5:158–163

    CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    CAS  PubMed  Google Scholar 

  • Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica x indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224

    Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    PubMed  Google Scholar 

  • Hell R, Stephan UD (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    CAS  PubMed  Google Scholar 

  • Herbik A, Giritch A, Horstmann C, Becker R, Balzer HJ, Baumlein H, Stephan UW (1996) Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol 111:533–540

    CAS  PubMed  Google Scholar 

  • Howeler RH (1973) Iron-induced oranging disease of rice in relation to physiochemical changes in a flooded Oxisol. Soil Sci Soc Am Proc 37:898–903

    CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    CAS  PubMed  Google Scholar 

  • IRRI (1965) International rice research institute annual report 1964. IRRI, Los Banos, Philippines, p 335

    Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M et al (2006) Rice plants take up iron as a Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    CAS  PubMed  Google Scholar 

  • Johnston M, Hillier L, Riles L, Albermann K, Andre B et al (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387:87–90

    CAS  PubMed  Google Scholar 

  • Kim AS, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    CAS  PubMed  Google Scholar 

  • Kopp MM, Coimbra JLM, Luz VK, Sousa RO, Carvalho FIF, Oliveira AC (2006) Organic acid tolerance in M3 families of oat mutants. Crop Breed Appl Biotechnol 7:1–8

    Google Scholar 

  • Kopp MM, Luz VK, Coimbra JLM, Sousa RO, Carvalho FIF, Oliveira AC (2007a) Níveis críticos dos ácidos acético, propiônico e butírico para estudos de toxicidade em arroz em solução nutritiva. Acta Botanica Brasílica 21:147–154

    Google Scholar 

  • Kopp MM, Luz VK, Coimbra JLM, Sousa RO, Carvalho FIF, Oliveira AC (2007b) Níveis críticos dos ácidos acético, propionico e butirico para estudos de toxicidade em arroz em solução nutritiva. Acta Botanica Brasilica 21:147–154

    Google Scholar 

  • Kopp MM, Luz VK, Silva VN, Coimbra JLM, Maia LC, Carvalho FIF, Oliveira AC (2007c) Efeito do pH da solução nutritiva na fitotoxidez causada por ácidos orgânicos em arroz. Magistra 17:8–12

    Google Scholar 

  • Kopp MM, Luz VK, Silva VN, Sousa RO, Carvalho FIF, Oliveira AC (2007d) Tolerância de plantas M4 de arroz ao ácido acético. Magistra 17:1–7

    Google Scholar 

  • Kopp MM, Luz VK, Coimbra JLM, Maia LC, Sousa RO, Carvalho FIF, Oliveira AC (2008) Evaluation of rice genotypes under propionate stress. Commun Soil Sci Plant Anal 39:1375–1384

    CAS  Google Scholar 

  • Krueger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo TS (2005) Mobilization of vacuolar iron by At NRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    CAS  PubMed  Google Scholar 

  • Lantin RS, Neue HU (1989) Iron toxicity: a nutritional disorder in wetland rice. Lavoura Arrozeira 42:3–8

    Google Scholar 

  • Lantin RS, Neue HV (1988) Iron toxicity: a nutritional disorder in wetland rice. In: Reunião da cultura do arroz irrigado, 18., Pelotas: 16p. Palestra apresentada

    Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat J-F, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769–782

    PubMed  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Ling H-Q, Bauer P, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron uptake responses in roots. Proc Natl Acad Sci USA 99:13938–13943

    CAS  PubMed  Google Scholar 

  • Liu X, Theil EC (2005) Ferritin as an iron concentrator and chelator target. Ann NY Acad Sci 1054:136–140

    CAS  PubMed  Google Scholar 

  • Liu DH, Adler K, Stephan UW (1998) Iron-containing particles accumulate in organelles and vacuoles of leaf and root cells in the nicotianamine-free tomato mutant chloronerva. Protoplasma 201:213–220

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (1987) Príncipes of plant nutrition. 4th ed. Bern, Internations Potash Institute. 687p.

    Google Scholar 

  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003) Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol 132:1989–1997

    CAS  PubMed  Google Scholar 

  • Moormann FR, Van Breemen N (1978) Rice: soil, water, land. International Rice Research Institute – IRRI, Los Baños

    Google Scholar 

  • Morel DA, Machado MO (1981) Identification of iron toxicity in Brazil. Int Rice Res Newsl 6:9

    Google Scholar 

  • Mori S, Nakanishi H, Takahashi M, Higuchi K, Nishizawa N-K (2001) Genetic engineering of transgenic rice with barley strategy-II genes. In: Horst WJ, Schenk MK, Burkert A, Claasen N, Flessa H, Frommer WB, Goldbach H, Olfs H, Romheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wiren Nv, Wittenmayer L (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Kluwer, Dordrecht, pp 54–55

    Google Scholar 

  • Murad E, Fischer WR (1988) The Geobiochemical cycle of iron. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. D. Reidel Publishing Company, Dordrecht, pp 1–18

    Google Scholar 

  • Narayanan NN, Vasconcelos MW, Grusak MA (2007) Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiol Biochem 45:277–286

    CAS  PubMed  Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F et al (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94

    CAS  PubMed  Google Scholar 

  • Oh S-H, Cho S-W, Kwon T-H, Yang M-S (1996) Purification and characterization of phytoferritin. J Biochem Mol Biol 29:540–544

    CAS  Google Scholar 

  • Ota Y (1968) Studies on the occurrence of the physiological disease called ‘bronzing’. Bull Nat Inst Agric Sci 18:31–104

    Google Scholar 

  • Ottow JCG, Benckiser G, Watanabe I, Santiago S (1983) Multiple soil stress as the prerequisite for iron toxicity of wetland rice (Oryza sativa L.). Tropical Agriculture 60:102–106

    CAS  Google Scholar 

  • Peng XX, Yamauchi M (1993) Ethylen production in rice bronzing leaves induced by ferrous iron. Plant Soil 149:227–234

    CAS  Google Scholar 

  • Peng XX, Yu XL, Li MQ, Yamauchi M (1996) Induction of peroxidase by Fe+2 in detached rice leaves. Plant Soil 180:159–163

    CAS  Google Scholar 

  • Petit JM, van Wuytswinkel O, Briat J-F, Lobréaux S (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem 276:5584–5590

    CAS  PubMed  Google Scholar 

  • Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W (2001) Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? Planta 213:967–976

    CAS  PubMed  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    CAS  Google Scholar 

  • Ponnamperuma FN, Bradfield R, Peech M (1955) Physiological disease of rice attributable to iron toxicity. Nature 175:275

    Google Scholar 

  • Rao DN, Mikkelsen DS (1977) Effect of rice straw incorporation on productions of organic acids in a flooded soil. Plant Soil 47(2):303–311

    CAS  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker E (2004) Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112–120

    CAS  PubMed  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    CAS  PubMed  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    PubMed  Google Scholar 

  • Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27(8):1471–1504

    CAS  Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Mok MC (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    CAS  PubMed  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193

    CAS  PubMed  Google Scholar 

  • Schmidt F, Bortolon L, Sousa RO (2007) Toxidez pelos ácidos propiônico e butírico em plântulas de arroz. Ciênc Rural 37:720–726

    CAS  Google Scholar 

  • Scholz G, Becker R, Pich A, Stephan UW (1992) Nicotianamine – a common constituent of strategies I and II of iron acquisition in plants. J Plant Nutr 15:1649–1665

    Google Scholar 

  • Schwertmann U, Taylor RE (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, WI, pp 379–438

    Google Scholar 

  • Seckback JJ (1982) Ferreting out the secret of plant ferritin – a review. J Plant Nutr 5:369–394

    CAS  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol Plant Mol Biol 42:145–188

    CAS  Google Scholar 

  • Silva MM, Vale MG, Damin ACF, Welz B, Mandaji M, Fett JP (2003) Method development for the determination of iron milligram amounts of rice plants (Oryza sativa L.) from cultivation experiments using graphite furnace atomic absorption spectrometry. Anal Bioanal Chem 377:165–172

    CAS  PubMed  Google Scholar 

  • Silva LS, Sousa RO, Pocojeski E (2008) Dinâmica da matéria orgânica em ambientes alagados. In: Santos G de A, Silva LS, Canellas LP, Camargo FAO (eds) Fundamentos da matéria orgânica do solo: ecossistemas tropicais & subtropicais, 2nd edn. Metropole, Porto Alegre, pp 525–543

    Google Scholar 

  • Singh BP, Das M, Prasad RN, Ram M (1992) Characteristics of Fe-toxic soils and affected plants and their correction in acid haplaquents of Meghalaya. Rice Res Newsl 17:18–19

    Google Scholar 

  • Sousa RO, Bortolon L (2002) Crescimento radicular e da parte aérea do arroz (Oryza sativa L.) e adsorção de nutrientes, em solução nutritiva com diferentes concentrações de ácido acético. Revista Brasileira de Agrociência 8(3):231–235

    Google Scholar 

  • Sousa RO, Gomes A Da S, Vahl LC (2004) Toxidez por ferro em arroz irrigado. In: Gomes A da S, Magalhães Jr A (eds) Arroz irrigado no Sul do Brasil. Embrapa Clima Temperado, Pelotas, pp 305–337

    Google Scholar 

  • Sousa RO, Peralba MCR, Meurer EJ (2002) Short chain organic acid dynamics in solution of flooded soil treated with ryegrass residues. Communications in soil science and plant analysis 33:779–787

    Google Scholar 

  • Sousa RO, Vahl LC, Otero XL (2009) Química de Solos Alagados. In: Mello VF, Alleoni LRF (eds) Química e Mineralogia do Solo. Parte II – Aplicações. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 485–528

    Google Scholar 

  • Staiger D (2002) Chemical strategies for iron acquisition in plants. Angew Chem Int Ed Engl 41:2259–2264

    CAS  PubMed  Google Scholar 

  • Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271:1552–1557

    CAS  PubMed  Google Scholar 

  • Stephan UW, Scholz G (1990) Nicotianamine concentrations in iron sufficient and iron deficient sunflower and barley roots. J Plant Physiol 136:631–634

    CAS  Google Scholar 

  • Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90

    CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469

    CAS  PubMed  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    CAS  PubMed  Google Scholar 

  • Takenaga H (1995) Nutrient absorption in relation to environmental factors. In: Matsuo T, Kumazawa K, Ishii R et al (eds) Science of the rice plant: physiology. Nosan Gyoson Bunka Kyokai, Tokyo, pp 278–294

    Google Scholar 

  • Takijima Y (1964) Studies on organic acids in paddy field soils with reference to their inhibitory effects on the growth of rice plants. Part. 1. Growth inhibiting action of organic acids and absorption and decomposition of them by soils. Soil Sci Plant Nutr 10(5):204–211

    CAS  Google Scholar 

  • Tanaka A, Loe R, Navasero SA (1966) Some mechanisms involved in the development of iron toxicity symptoms in the rice plant. Soil Sci Plant Nutr 12(4):32–38

    Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    CAS  PubMed  Google Scholar 

  • Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    CAS  PubMed  Google Scholar 

  • Urbanowski JL, Piper RC (1999) The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274:38061–38070

    CAS  PubMed  Google Scholar 

  • Van Breemen N (1988) Long-term chemical, mineralogical, and morphological effects of iron-redox processes in periodically flooded soils. In: Stucky JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. D. Reidel Publishing Company, Dordrecht, pp 811–823

    Google Scholar 

  • Van Mensvoort ME, Lantin RS, Brinkmann R, Van Breemen N (1985) Toxicitics of wetland Soils. In: IRRI, Wetland soils: characterization, classification and utilization. Los Banõs: IRRI, p.308–19

    Google Scholar 

  • Varoto C, Maivwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31(5):589–599

    Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML et al (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    CAS  PubMed  Google Scholar 

  • Vieira NRA, Santos AB, Sant’ana EP (1999) A cultura do arroz no Brasil. Embrapa Arroz e Feijão, Santo Antônio de Goiás

    Google Scholar 

  • Virmani SS (1977) Varietal tolerance of rice to iron toxicity in Liberia. Rice Res Newsl 2:4–5

    Google Scholar 

  • Von Wiren N, Klair S, Bansal S, Briat J-F, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Google Scholar 

  • Wallace JM, Whitehand LC (1980) Adverse synergistic effects between acetic, propionic, butyric and valeric acids on the growth of wheat seedling roots. Soil Biol Biochem 12(4):445–446

    CAS  Google Scholar 

  • Wan J-L, Zhai H-Q, Wan J-M, Ikehashi H (2003) Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice, Oryza sativa L. Euphytica 131:201–206

    CAS  Google Scholar 

  • Wei J, Theil EC (2000) Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem 275:17488–17493

    CAS  PubMed  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    CAS  PubMed  Google Scholar 

  • Wu P, Luo A, Zhu J, Yang J, Huang N, Senadhira D (1997) Molecular markers linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196:317–320

    CAS  Google Scholar 

  • Wu P, Hu B, Liao C, Zhu J, Wu Y, Senadhira D, Paterson AH (1998) Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil 203:217–226

    CAS  Google Scholar 

  • Xoconostle-Cazares B, Ruiz-Medrano R, Lucas WJ (2000) Proteolytic processing of CmPP36, a protein from the cytochrome b5 reductase family, is required for entry into the phloem translocation pathway. Plant J 24:735–747

    CAS  PubMed  Google Scholar 

  • Yun CW, Ferea T, Rashford J, Ardon O, Brown PO et al (2000a) Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275:10709–10715

    CAS  PubMed  Google Scholar 

  • Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000b) Siderophore-iron uptake in Saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem 275:16354–16359

    CAS  PubMed  Google Scholar 

  • Zancani M, Peresson C, Biroccio A, Federici G, Urbani A, Murgia I, Soave C, Micali F, Vianello A, Macrý F (2004) Evidence for the presence of ferritin in plant mitochondria. Eur J Biochem 271:3657–3664

    CAS  PubMed  Google Scholar 

  • Zimmer PD, Mattos LAT, Oliveira AC, Carvalho FIF, Magalhães A Jr, Köpp MM, Freitas FA (2003) Identification of rice mutants (Oryza sativa L.) for agronomical and root system traits. Revista Brasileira de Agrociência 9:195–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogerio O. Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Sousa, R.O., de Oliveira, A.C. (2011). Root Responses to Major Abiotic Stresses in Flooded Soils. In: Costa de Oliveira, A., Varshney, R. (eds) Root Genomics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85546-0_7

Download citation

Publish with us

Policies and ethics