Skip to main content

Plant Genetics for Study of the Roles of Root Exudates and Microbes in the Soil

  • Chapter
  • First Online:
Root Genomics

Abstract

The rhizosphere contains a great variety of microbial organisms, at least partly in response to the large quantities of organic compounds that are actively exuded by plant roots. The roles of these exudate compounds, and of the microbes in the root zone, are largely unknown. In order to dissect the relationships between soil microbes, plant exudates, and plant function, we planned to use host genetics to identify exudate–microbe correlates that segregate with specific plant genes. An exudate capture and characterization system was developed for Arabidopsis thaliana, but none of the six most-reproducible phenolic peaks analyzed by HPLC were found to vary in either ecoptypic analysis or the analysis of mutagenized populations. This surprising recalcitrance to genetic investigation led us to move immediately into the metagenomic studies that were originally planned to follow identification of plant genes that controlled microbial population and exudate presence/absence. Using approaches that distinguished between the microflora in the soil around the root, on the root surface, and inside the root, we found that each of these zones differed dramatically in microbial populations and that major differences were seen in the populations depending on the grass species employed (Zea vs. Sorghum vs. Panicum) as host. For instance, fungi were much more abundant in both quantity and diversity within and attached to the root than they were in the rhizosphere soil or in the soil prior to the presence of plant roots. These preliminary studies indicate the great potential for future investigations of the plant-determined chemical and organismal diversity in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie JM, Jordan S, Barker GM (2008) Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144:9–20

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148

    Article  CAS  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in the rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bekkara F, Jay M, Viricel MR, Rome S (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203:27–36

    Article  Google Scholar 

  • Brimecombe MJ, de Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton E, Varanini Z, Nanniperi R (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Springer, Netherlands, pp 95–140

    Google Scholar 

  • Capper AL, Higgins KP (2007) Application of Pseudomonas fluorescens isolates to wheat as potential biological control agents against take-all. Plant Pathol 42:560–567

    Article  Google Scholar 

  • Deshpande A (2006) Genetics of root exudates in Arabidopsis thaliana. PhD thesis, Purdue University

    Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Article  Google Scholar 

  • Garcia JAL, Barbas C, Probanza A, Barrientos ML, Manero FJG (2001) Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem Anal 12:305–311

    Article  CAS  Google Scholar 

  • Groleau-Renaud V, Planteureux S, Guckert A (1998) Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions. Plant Soil 201:231–239

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  Google Scholar 

  • Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. Plant Physiol 97:217–226

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2006) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  Google Scholar 

  • Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum tolerance in Arabidopsis (Landsberg erecta x Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948

    Article  CAS  PubMed  Google Scholar 

  • Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoid and nodulation. Can J Bot 77:1311–1315

    Article  CAS  Google Scholar 

  • Iijima M, Griffiths B, Bengough GA (2000) Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytol 145:477–482

    Article  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Koornneef M (1990) Mutations affecting the testa color in Arabidopsis. Arabidopsis Inf Serv 28:1–4

    Google Scholar 

  • Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    Article  CAS  PubMed  Google Scholar 

  • Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234–240

    Article  CAS  Google Scholar 

  • Leveau JHJ (2007) The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:279–300

    Article  CAS  Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. Zeits Pflanzen Boden 162:373–383

    Article  CAS  Google Scholar 

  • Micallef SA, Channer S, Shiaris MP, Colon-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780

    Article  PubMed  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267:1502–1509

    CAS  PubMed  Google Scholar 

  • Nimbal CI, Pedersen JF, Yerkes CN, Weston LA, Weller SC (1996) Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. J Agric Food Chem 44:1343–1347

    Article  CAS  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117

    Article  PubMed  Google Scholar 

  • Prosser J, Rangel-Castro JI, Killham K (2006) Studying plant–microbe interactions using stable isotope technologies. Curr Opin Biotechol 17:98–102

    Article  CAS  Google Scholar 

  • Reiter WD, Chapple C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12:335–345

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:786–793

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    CAS  PubMed  Google Scholar 

  • Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–446

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Clint Chapple for providing seed, for lab space and facilities to perform the HPLC analysis, and for his many helpful comments regarding the Arabidopsis component of this project. This research and preparation of the manuscript were supported by endowments to the JLB laboratory from Purdue University (Umbarger Professorship) and the University of Georgia (Giles Professorship and the Georgia Research Alliance), and the switchgrass studies by the BioEnergy Science Center (BESC), a research consortium funded by the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Bennetzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Deshpande, A., Pontaroli, A.C., Chaluvadi, S.R., Lu, F., Bennetzen, J.L. (2011). Plant Genetics for Study of the Roles of Root Exudates and Microbes in the Soil. In: Costa de Oliveira, A., Varshney, R. (eds) Root Genomics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85546-0_4

Download citation

Publish with us

Policies and ethics