Skip to main content

Molecular Breeding of Rice for Problem Soils

  • Chapter
  • First Online:
Root Genomics

Abstract

Soil problems resulting from either excess or shortage of certain elements as a consequence of specific soil properties are widespread globally and significantly constrain agriculture production. Reclaiming these soils is too costly for rice farmers who are predominately resource-poor with small land holdings. However, breeding cultivars with improved tolerances of prevailing stresses is more feasible and sustainable, particularly when combined with best agronomic and mitigation practices. The recent developments in unraveling molecular and physiological bases of tolerance of various abiotic stresses, the discoveries made in identifying major quantitative trait loci (QTLs) and genes associated with tolerance, and the advances in molecular marker technologies have made it possible to achieve faster progress in developing more resilient, high-yielding varieties for these unfavorable soil conditions. Precise marker-assisted backcrossing (MABC) systems are being developed and used for introgressing major QTLs associated with tolerance of various soil problems into popular varieties and elite breeding lines lacking these traits, and this has enabled the swift development and deployment of such varieties. We have summarized the progress made so far in major stresses encountered in rice problem soils including salt stress and nutritional toxicities and deficiencies. We have also provided a brief account of the progress toward developing and using MABC for cultivar improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audebert A, Sahrawat KL (2000) Mechanisms for iron toxicity tolerance in lowland rice. J Plant Nutr 23:1877–1885

    Article  CAS  Google Scholar 

  • Balasubramanian V, Sie M, Hijmans RJ, Otsuka K (2007) Increasing rice production in sub-Saharan Africa. Adv Agron 94:55–133

    Article  CAS  Google Scholar 

  • Berthomieu P, Conéjéro G, Nublat A, Brackenbury W, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P, Tester M, Very A-A, Sentenac HandCasse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon G, Apse M (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  CAS  PubMed  Google Scholar 

  • Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp J Agric Sci 85:68–76

    Google Scholar 

  • Collard BCY, Thomson M, Penarubia M, Lu X, Heuer S, Wissuwa M, Mackill DJ, Ismail AM (2006) SSR analysis of rice near-isogenic lines (NILs) for P-deficiency tolerance. SABRAO J Breed Genet 38:129–136

    Google Scholar 

  • De Datta SK, Biswas TK, Charoenchamratcheep C (1990) Phosphorus requirements and management for lowland rice. In: International Rice Research Institute (ed) Phosphorus requirements for sustainable agriculture in Asia and Oceania. International Rice Research Institute, Manila, pp 307–323

    Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  PubMed  Google Scholar 

  • Dobermann A, Fairhurst TH (2000) Nutrient disorders and nutrient management. The International Rice Research Institute, Manila, Philippines, p 191

    Google Scholar 

  • Fageria N, Morais O, Baligar V, Wright R (1988) Response of rice cultivars to phosphorus supply on an oxisol. Fertilizer Res 16:195–206

    Article  Google Scholar 

  • Fageria NK, Santos AB, Barbosa Filho MP, Guimarães CM (2008) Iron toxicity in lowland rice. J Plant Nutr 31:1676–1697

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol 88:363–373

    Article  CAS  Google Scholar 

  • Forno DA, Yoshida S, Asher CJ (1975) Zinc deficiency in rice. I. Soil factors associated with the deficiency. Plant Soil 42:537–550

    Article  CAS  Google Scholar 

  • Gao XH, Ren ZH, Zhao YX, Zhang H (2003) Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiol 133:1873–1881

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Bladeras E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  CAS  PubMed  Google Scholar 

  • Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). PhD. thesis, University of the Philippines, Los Baþos 118 p

    Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101

    Article  Google Scholar 

  • Gunawardena I, Virmani S, Sumo FJ (1982) Breeding rice for tolerance to iron toxicity. Oryza 19:5–12

    Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Yang XE, Römheld V, Neumann G (2005) Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environ Exp Bot 54:163–173

    Article  CAS  Google Scholar 

  • Hedley MJ, Kirk GJD, Santos MB (1994) Phosphorus efficiency and the forms of soil phosphorus utilized by upland rice cultivars. Plant Soil 158:53–62

    Article  CAS  Google Scholar 

  • Heuer S, Lu X, Chin J-H, Tanaka JP, Kanamori H, Matsumoto T, De Leon T, Ulat VJ, Ismail AM, Wissuwa M (2009) Comparative sequence analysis of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J 7:456–471

    Article  CAS  PubMed  Google Scholar 

  • Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) under zinc and phosphorus deficiency. Plant Soil 283:155–162

    Article  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants: diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Ymada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oriza sativa. Plant J 27:115–128

    Article  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  CAS  PubMed  Google Scholar 

  • Khatun S, Rizzo CA, Flowers TJ (1995) Genotypic variation in the effect of salinity on fertility in rice. Plant Soil 173:239–250

    Article  CAS  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137

    Article  CAS  Google Scholar 

  • Kirk GJD, Du LV (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200

    Article  CAS  Google Scholar 

  • Kirk GJD, Hedley MJ, Bouldin DR (1993) Phosphorus efficiency in upland rice cultivars. In: IBSRAM Reports and Papers on the Management of Acid Soils (IBSRAM/ASIALAND). Network Document No. 6. Bangkok, IBSRAM, pp 279–295

    Google Scholar 

  • Kirk GJD, Santos EB, Santos MB (1999) Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: rates of excretion and decomposition, effects on rhizosphere pH, and effects on phosphate solubility and uptake. New Phytol 142:185–200

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  CAS  PubMed  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Hiradate S, Matsumoto H (1998) High aluminum resistance in buckwheat. II. Oxalic acid detoxifies aluminum internally. Plant Physiol 117:753–759

    Article  CAS  Google Scholar 

  • Ma JF, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T, Yano M (2002) Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol 43:652–659

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang Y-H, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • McNally K, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H (2006) Sequencing multiple and diverse rice varieties: connecting whole-genome variation with phenotype. Plant Physiol 141:26–31

    Article  CAS  PubMed  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Moradi F, Ismail AM, Egdane A, Gregorio GB (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Indian J Plant Physiol 8:105–116

    Google Scholar 

  • Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard B, Septiningsih E, Vergara G, Sanchez D, Xu K, Ismail A, Mackill D (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  CAS  PubMed  Google Scholar 

  • Neue HU, Lantin RS (1994) Micronutrient toxicities and deficiencies in rice. In: Yeo AR, Flowers TJ (eds) Soil mineral stresses: approaches to crop improvement. Springer, Berlin, pp 175–200

    Google Scholar 

  • Nguyen VT, Burow MD, Nguyen HT, Le BT, Le TD, Paterson AH (2001) Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet 102:1002–1010

    Article  CAS  Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH, Nguyen HT (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics 267:772–780

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff. into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    CAS  PubMed  Google Scholar 

  • Ni JJ, Wu P, Senadhira D, Huang N (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369

    Article  CAS  Google Scholar 

  • Otani T, Ae N (1996) Sensitivity of phosphorus uptake to changes in root length and soil volume. Agron J 88:371–375

    Article  Google Scholar 

  • Peng S, Ismail AM (2004) Physiological basis of yield and environmental adaptation in rice. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Dekker, New York, pp 83–140

    Google Scholar 

  • Pessarakli M, Szabolcs I (1999) Soil salinity and sodicity as particular plant /crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pp 1–16

    Chapter  Google Scholar 

  • Ponnamperuma FN (1994) Evaluation and improvement of lands for wetland rice production. In: Senadhira D (ed) Rice and problem soils in South and Southeast Asia. IRRI Discussion Paper Series No. 4, International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Ponnamperuma FN, Bradfield R, Peech M (1955) Physiological disease of rice attributable to iron toxicity. Nature 175:265

    Article  CAS  Google Scholar 

  • Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78:162–164

    CAS  Google Scholar 

  • Qadar A (2002) Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations, and phosphorus/zinc ratio in their leaves. J Plant Nutr 25:457–473

    Article  CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD (2002) Tolerance of rice germplasm to salinity and other soil chemical stresses in tidal wetlands. Field Crops Res 76:111–121

    Article  Google Scholar 

  • Quijano-Guerta C, Kirk GJD, Portugal AM, Bartolome VI, McLaren GC (2002) Tolerance of rice germplasm to zinc deficiency. Field Crops Res 76:123–130

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai ZL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z, Romheld V, Marschner H (1998) Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. J Plant Physiol 152:433–438

    CAS  Google Scholar 

  • Sahrawat KL, Mulbah CK, Diatta S, De Laune RD, Patrick WH Jr, Singh BN, Jones MP (1996) The role of tolerant genotypes and plant nutrients in the management of iron toxicity in lowland rice. J Agric Sci 126:143–146

    Article  CAS  Google Scholar 

  • Salam MA, Rahman MA, Bhuiyan MAR, Uddin K, Sarker MRA, Yasmeen R, Rahman MS (2007) BRRI dhan 47: a salt tolerant variety for the boro season. Int Rice Res Notes 32:42–43

    Google Scholar 

  • Saleque MA, Kirk GJD (1995) Root-induced solubilization of phosphate in the rhizosphere of lowland rice. New Phytol 129:325–336

    Article  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Senadhira D, Zepata-Arias FJ, Gregorio GB, Alejar MS, de la Cruz HC, Padolina TF, Galvez AM (2002) Development of the first salt-tolerant rice cultivar through indica/indica anther culture. Field Crops Res 76:103–110

    Article  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A, Kato K, Komatsu A, Motomura K, Ikehashi H (2008) Genetic analysis of root elongation induced by phosphorus deffciency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Singh KN, Mishra B, Sharma SK, Tyagi NK (2004) Harnessing plant salt tolerance for overcoming sodicity constraints: an Indian experience. In: Advances in sodic land reclamation. Concept paper for the International conference on sustainable management of sodic soils, Lucknow, India, 9–14 February, 2004. pp 81–120

    Google Scholar 

  • Singh S, Mackill DJ, Ismail AM (2009) Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res 113:12–23. doi: 10.1016/j.fcr.2009.04.003

    Article  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    Article  PubMed  Google Scholar 

  • Suzuki MT, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev 9:444–457

    Article  CAS  Google Scholar 

  • Tanksley D, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Torabi S, Wissuwa M, Heidari M, Naghavi M-R, Gilany K, Hajirezaei M-R, Omidi M, Yazdi-Samadi B, Ismail AM, Salekdeh GH (2008) A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 9:159–170

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice (Oryza sativa L.) genotypes under salinity stress during vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63:609–623

    Article  CAS  PubMed  Google Scholar 

  • Wan JL, Zhai HQ, Wan JM, Ikehashi H (2003) Detection and analysis of QTLs for ferrous iron toxicity tolerance in rice Oryza sativa L. Euphytica 131:201–206

    Article  CAS  Google Scholar 

  • White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crops Res 60:11–26

    Article  Google Scholar 

  • Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M (2005) Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil 269:57–68

    Article  CAS  Google Scholar 

  • Wissuwa M, Ae N (2001a) Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed 120:43–48

    Article  CAS  Google Scholar 

  • Wissuwa M, Ae N (2001b) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    Article  CAS  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Wissuwa M, Ismail AM, Yanagihara S (2006) Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiol 142:731–741

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Luo A, Zhu J, Yang J, Huang N, Senadhira D (1997) Molecular marker linked to genes underlying seedling tolerance for ferrous iron toxicity. Plant Soil 196:317–320

    Article  CAS  Google Scholar 

  • Wu P, Liao CD, Hu B, Yi KK, Jin WZ, Ni JJ, He C (2000) QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet 100:1295–1303

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald RC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Wan JM, Jiang L, Liu LL, Su N, Zhai HQ, Ma JF (2006) QTL analysis of aluminum resistance in rice (Oryza sativa L.). Plant Soil 287:375–383

    Article  CAS  Google Scholar 

  • Xue Y, Jiang L, Su N, Wang JK, Deng P, Ma JF, Zhai HQ, Wan JM (2007) The genetic basis and fine-mapping of a stable quantitative-trait loci for aluminum tolerance in rice. Planta 227:255–262

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Romheld V, Marschner H (1994) Uptake of iron, zinc, manganese, and copper by seedlings of hybrid and traditional rice cultivars from different soil types. J Plant Nutr 17:319–331

    Article  CAS  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:161–173

    Article  Google Scholar 

  • Yoshida S, Ahn JS, Forno DA (1973) Occurrence, diagnosis and correction of zinc deficiency of lowland rice. Soil Sci Plant Nutr 19:83–93

    CAS  Google Scholar 

  • Zhang GY, Guo Y, Chen SL, Chen SY (1995) RFLP tagging of a salt tolerance gene in rice. Plant Sci 110:227–234

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbagi M. Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Ismail, A.M., Thomson, M.J. (2011). Molecular Breeding of Rice for Problem Soils. In: Costa de Oliveira, A., Varshney, R. (eds) Root Genomics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85546-0_12

Download citation

Publish with us

Policies and ethics