Skip to main content

Near-Infrared Subretinal Imaging in Choroidal Neovascularization

  • Chapter
Medical Retina

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Core Messages

  • Current therapeutic strategies for treatment of choroidal neovascularization (CNV) require frequent monitoring of neovascular activity, which calls for a noninvasive, low-risk imaging technique.

  • Ocular coherence tomography (OCT) focuses on static anatomical features like retinal thickening and the presence of sub- and intraretinal fluid, whereas fluorescein angiography employs a longer time frame better suited to address the dynamic aspect of active fluid leakage.

  • Near-infrared imaging can be used in the general clinical setting using a commercially available confocal scanning laser device (Heidelberg Retina Angiograph 2).

  • Near-infrared reflectance (NIR) imaging provides information on alterations in the retinal structure, subretinal lesions, and the accumulation of fluid within and beneath the retina and the retinal pigment epithelium (RPE). Therefore, NIR complements aspects of both fluorescein angiography and OCT in a noninvasive way.

  • Increased intra- and subretinal fluid content reduces NIR and causes a characteristic dark halo around a lesion.

  • A classic CNV typically shows a dark core surrounded by a bright corona on NIR imaging.

  • The near-infrared image of occult neovascular membranes and detachments of the RPE are less distinctive when compared with classic neovascular membranes. An occult lesion shows an uneven signal increase; a RPE detachment typically presents with a poorly defined ring-shaped reflex.

  • Following successful therapeutic intervention, certain alterations occur in the near-infrared image of the choroidal neovascular membrane. Digital subtraction analysis may be employed to enhance these alterations to ­accurately assess treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grossniklaus HE, Miskala PH, Green WR, Bressler SB, Hawkins BS, Toth C, Wilson DJ, Bressler NM (2005) Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7. Arch Ophthalmol 123:914–921

    Article  PubMed  Google Scholar 

  2. Grossniklaus HE, Wilson DJ, Bressler SB, Bressler NM, Toth CA, Green WR, Miskala P (2006) Clinicopathologic studies of eyes that were obtained postmortem from four patients who were enrolled in the submacular surgery trials: SST Report No. 16. Am J Ophthalmol 141:93–104

    Article  PubMed  Google Scholar 

  3. Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 44(Suppl 1):S10–S32

    Article  Google Scholar 

  4. Grossniklaus HE, Gass JD (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol 126:59–69

    Article  PubMed  CAS  Google Scholar 

  5. Gass JD (1994) Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Am J Ophthalmol 118:285–298

    PubMed  CAS  Google Scholar 

  6. Lafaut BA, Bartz-Schmidt KU, Vanden BC, Aisenbrey S, De Laey JJ, Heimann K (2000) Clinicopathological correlation in exudative age related macular degeneration: histological differentiation between classic and occult choroidal neovascularisation. Br J Ophthalmol 84:239–243

    Article  PubMed  CAS  Google Scholar 

  7. Campochiaro PA (2000) Retinal and choroidal neovascularization. J Cell Physiol 184:301–310

    Article  PubMed  CAS  Google Scholar 

  8. Kwiterovich KA, Maguire MG, Murphy RP, Schachat AP, Bressler NM, Bressler SB, Fine SL (1991) Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study. Ophthalmology 98:1139–1142

    PubMed  CAS  Google Scholar 

  9. Holz FG, Jorzik J, Schutt F, Flach U, Unnebrink K (2003) Agreement among ophthalmologists in evaluating fluorescein angiograms in patients with neovascular age-related macular degeneration for photodynamic therapy eligibility (FLAP-study). Ophthalmology 110:400–405

    Article  PubMed  Google Scholar 

  10. Slakter JS, Yannuzzi LA, Guyer DR, Sorenson JA, Orlock DA (1995) Indocyanine-green angiography. Curr Opin Ophthalmol 6:25–32

    Article  PubMed  CAS  Google Scholar 

  11. Obana A, Miki T, Hayashi K, Takeda M, Kawamura A, Mutoh T, Harino S, Fukushima I, Komatsu H, Takaku Y (1994) Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 118:749–753

    PubMed  CAS  Google Scholar 

  12. Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508

    Article  PubMed  Google Scholar 

  13. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS (2005) Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  Google Scholar 

  14. Zhang N, Hoffmeyer GC, Young ES, Burns RE, Winter KP, Stinnett SS, Toth CA, Jaffe GJ (2007) Optical coherence tomography reader agreement in neovascular age-related macular degeneration. Am J Ophthalmol 144:37–44

    Article  PubMed  Google Scholar 

  15. van Velthoven ME, de Smet MD, Schlingemann RO, Magnani M, Verbraak FD (2006) Added value of OCT in evaluating the presence of leakage in patients with age-related macular degeneration treated with PDT. Graefes Arch Clin Exp Ophthalmol 244:1119–1123

    Article  PubMed  Google Scholar 

  16. Dallow RL (1974) Color infrared photography of the ocular fundus. Arch Ophthalmol 92:254–258

    Article  PubMed  CAS  Google Scholar 

  17. Elsner AE, Burns SA, Weiter JJ, Delori FC (1996) Infrared imaging of sub-retinal structures in the human ocular fundus. Vision Res 36:191–205

    Article  PubMed  CAS  Google Scholar 

  18. Elsner AE, Weber A, Cheney MC, Vannasdale DA, Miura M (2007) Imaging polarimetry in patients with neovascular age-related macular degeneration. J Opt Soc Am A Opt Image Sci Vis 24:1468–1480

    Article  PubMed  Google Scholar 

  19. Semoun O, Guigui B, Tick S, Coscas G, Soubrane G, Souied EH (2009) Infrared features of classic choroidal neovascularisation in exudative age-related macular degeneration. Br J Ophthalmol 93:182–185

    Article  PubMed  CAS  Google Scholar 

  20. Theelen T, Berendschot TT, Hoyng CB, Boon CJ, Klevering BJ (2009) Near-infrared reflectance imaging of neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2009 (in press)

    Google Scholar 

  21. Webb RH, Hughes GW, Delori FC (1987) Confocal scanning laser ophthalmoscope. Appl Opt 26:1492–1499

    Article  PubMed  CAS  Google Scholar 

  22. Miura M, Elsner AE, Beausencourt E, Kunze C, Hartnett ME, Lashkari K, Trempe CL (2002) Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration. Retina 22:300–308

    Article  PubMed  Google Scholar 

  23. Hangai M, Yamamoto M, Sakamoto A, Yoshimura N (2009) Ultrahigh-resolution versus speckle noise-reduction in spectral-domain optical coherence tomography. Opt Express 17:4221–4235

    Article  PubMed  CAS  Google Scholar 

  24. Jorzik JJ, Bindewald A, Dithmar S, Holz FG (2005) Digital simultaneous fluorescein and indocyanine green angiography, autofluorescence, and red-free imaging with a solid-state laser-based confocal scanning laser ophthalmoscope. Retina 25:405–416

    Article  PubMed  Google Scholar 

  25. Gorrand JM, Alfieri R, Boire JY (1984) Diffusion of the retinal layers of the living human eye. Vision Res 24:1097–1106

    Article  PubMed  CAS  Google Scholar 

  26. Gorrand JM, Delori FC (1999) Reflectance and curvature of the inner limiting membrane at the foveola. J Opt Soc Am A Opt Image Sci Vis 16:1229–1237

    Article  PubMed  CAS  Google Scholar 

  27. Berendschot TT, De Lint PJ, van Norren D (2003) Fundus reflectance – historical and present ideas. Prog Retin Eye Res 22:171–200

    Article  PubMed  Google Scholar 

  28. van de Kraats J, Berendschot TT, van Norren D (1996) The pathways of light measured in fundus reflectometry. Vision Res 36:2229–2247

    Article  PubMed  Google Scholar 

  29. Weinberger AW, Lappas A, Kirschkamp T, Mazinani BA, Huth JK, Mohammadi B, Walter P (2006) Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Invest Ophthalmol Vis Sci 47:3098–3108

    Article  PubMed  Google Scholar 

  30. Delori FC, Pflibsen KP (1989) Spectral reflectance of the human ocular fundus. Appl Opt 28:1061–1077

    Article  PubMed  CAS  Google Scholar 

  31. Eter N, Spaide RF (2005) Comparison of fluorescein angiography and optical coherence tomography for patients with choroidal neovascularization after photodynamic therapy. Retina 25:691–696

    Article  PubMed  Google Scholar 

  32. Murakami T, Tsujikawa A, Ohta M, Miyamoto K, Kita M, Watanabe D, Takagi H, Yoshimura N (2007) Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol 143:171–173

    Article  PubMed  CAS  Google Scholar 

  33. Elsner AE, Zhou Q, Beck F, Tornambe PE, Burns SA, Weiter JJ, Dreher AW (2001) Detecting AMD with multiply scattered light tomography. Int Ophthalmol 23:245–250

    Article  PubMed  CAS  Google Scholar 

  34. Lardenoye CW, Probst K, DeLint PJ, Rothova A (2000) Photoreceptor function in eyes with macular edema. Invest Ophthalmol Vis Sci 41:4048–4053

    PubMed  CAS  Google Scholar 

  35. The Macular Photocoagulation Study Group (1994) Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Arch Ophthalmol 112:500–509

    Article  Google Scholar 

  36. Bressler NM (2001) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Arch Ophthalmol 119:198–207

    PubMed  CAS  Google Scholar 

  37. Gass JD (1997) Stereoscopic atlas of macular diseases, 4th edn. Mosby, St Louis

    Google Scholar 

  38. Hartnett ME, Elsner AE (1996) Characteristics of exudative age-related macular degeneration determined in vivo with confocal and indirect infrared imaging. Ophthalmology 103:58–71

    PubMed  CAS  Google Scholar 

  39. Lafaut BA, Aisenbrey S, Vanden BC, Bartz-Schmidt KU (2000) Clinicopathological correlation of deep retinal vascular anomalous complex in age related macular degeneration. Br J Ophthalmol 84:1269–1274

    Article  PubMed  CAS  Google Scholar 

  40. Olsen TW, Feng X, Kasper TJ, Rath PP, Steuer ER (2004) Fluorescein angiographic lesion type frequency in ­neovascular age-related macular degeneration. Ophthal­mology 111:250–255

    Article  PubMed  Google Scholar 

  41. Kunze C, Elsner AE, Beausencourt E, Moraes L, Hartnett ME, Trempe CL (1999) Spatial extent of pigment epithelial detachments in age-related macular degeneration. Ophthalmology 106:1830–1840

    Article  PubMed  CAS  Google Scholar 

  42. Miura M, Yamanari M, Iwasaki T, Elsner AE, Makita S, Yatagai T, Yasuno Y (2008) Imaging polarimetry in age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2661–2667

    Article  PubMed  Google Scholar 

  43. Olsen TW, Feng X, Kasper TJ, Rath PP, Steuer ER (2004) Fluorescein angiographic lesion type frequency in neovascular age-related macular degeneration. Ophthalmology 111:250–255

    Article  PubMed  Google Scholar 

  44. Yannuzzi LA, Negrao S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434

    Article  PubMed  CAS  Google Scholar 

  45. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  PubMed  CAS  Google Scholar 

  46. Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A (2007) Muller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol 245:627–636

    Article  PubMed  Google Scholar 

  47. Yannuzzi LA, Ciardella A, Spaide RF, Rabb M, Freund KB, Orlock DA (1997) The expanding clinical spectrum of idiopathic polypoidal choroidal vasculopathy. Arch Ophthalmol 115:478–485

    Article  PubMed  CAS  Google Scholar 

  48. Iijima H, Iida T, Imai M, Gohdo T, Tsukahara S (2000) Optical coherence tomography of orange–red subretinal lesions in eyes with idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol 129:21–26

    Article  PubMed  CAS  Google Scholar 

  49. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B (1990) Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina 10:1–8

    Article  PubMed  CAS  Google Scholar 

  50. Lafaut BA, Aisenbrey S, Vanden BC, Di TF, Bartz-Schmidt KU (2001) Clinicopathological correlation in exudative age-related macular degeneration: recurrent choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 239:5–11

    Article  PubMed  CAS  Google Scholar 

  51. Weingarten MS, Papazoglou ES, Zubkov L, Zhu L, Neidrauer M, Savir G, Peace K, Newby JG, Pourrezaei K (2008) Correlation of near infrared absorption and diffuse reflectance spectroscopy scattering with tissue neovascularization and collagen concentration in a diabetic rat wound healing model. Wound Repair Regen 16:234–242

    Article  PubMed  Google Scholar 

  52. Marano F, Deutman AF, Leys A, Aandekerk AL (2000) Hereditary retinal dystrophies and choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 238:760–764

    Article  PubMed  CAS  Google Scholar 

  53. O’Toole L, Tufail A, Pavesio C (2005) Management of choroidal neovascularization in uveitis. Int Ophthalmol Clin 45:157–177

    Article  PubMed  Google Scholar 

  54. Soubrane G (2008) Choroidal neovascularization in pathologic myopia: recent developments in diagnosis and treatment. Surv Ophthalmol 53:121–138

    Article  PubMed  Google Scholar 

  55. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617

    Article  PubMed  CAS  Google Scholar 

  56. Meyer CH, Helb HM, Eter N (2008) [Monitoring of AMD patients on anti-vascular endothelial growth factor (VEGF) treatment. Practical notes on functional and anatomical examination parameters from drug approval studies, specialist information and case series]. Ophthalmologe 105: 125–38

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Theelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theelen, T., Hoyng, C.B., Klevering, B.J. (2010). Near-Infrared Subretinal Imaging in Choroidal Neovascularization. In: Holz, F.G., Spaide, R. (eds) Medical Retina. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85540-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85540-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85539-2

  • Online ISBN: 978-3-540-85540-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics