Skip to main content

Hidden-Vector Encryption with Groups of Prime Order

  • Conference paper
Pairing-Based Cryptography – Pairing 2008 (Pairing 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5209))

Included in the following conference series:

Abstract

Predicate encryption schemes are encryption schemes in which each ciphertext Ct is associated with a binary attribute vector and keys K are associated with predicates. A key K can decrypt a ciphertext if and only if the attribute vector of the ciphertext satisfies the predicate of the key. Predicate encryption schemes can be used to implement fine-grained access control on encrypted data and to perform search on encrypted data.

Hidden vector encryption schemes [Boneh and Waters – TCC 2007] are encryption schemes in which each ciphertext is associated with a binary vector and each key K is associated with binary vector with “don’t care” entries (denoted with ⋆). Key K can decrypt ciphertext if and only if and agree for all i for which \(y_i\ne \star\).

Hidden vector encryption schemes are an important type of predicate encryption schemes as they can be used to construct more sophisticated predicate encryption schemes (supporting for example range and subset queries).

We give a construction for hidden-vector encryption from standard complexity assumptions on bilinear groups of prime order. Previous constructions were in bilinear groups of composite order and thus resulted in less efficient schemes. Our construction is both payload-hiding and attribute-hiding meaning that also the privacy of the attribute vector, besides privacy of the cleartext, is guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  2. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Google Scholar 

  3. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Boneh, D., Waters, B.: Conjunctive, subset and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for Fine-Grained Access Control for Encrypted Data. In: ACM CCS 2006 13th Conference on Computer and Communications Security, Alexandria, VA, USA, October 30 - November 3, 2006, pp. 89–98. ACM Press, New York (2006)

    Chapter  Google Scholar 

  6. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunction, Polynomial Equations, and Inner Products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-Dimensional Range Query over Encrypted Data. In: 2007 IEEE Symposium on Security and Privacy, Oakland, CA. IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Steven D. Galbraith Kenneth G. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iovino, V., Persiano, G. (2008). Hidden-Vector Encryption with Groups of Prime Order. In: Galbraith, S.D., Paterson, K.G. (eds) Pairing-Based Cryptography – Pairing 2008. Pairing 2008. Lecture Notes in Computer Science, vol 5209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85538-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85538-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85503-3

  • Online ISBN: 978-3-540-85538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics