Skip to main content

Transfinite Interpolation for Well-Definition in Error Analysis in Solid Modelling

  • Conference paper
Reliable Implementation of Real Number Algorithms: Theory and Practice

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5045))

Abstract

An overall approach to the problem of error analysis in the context of solid modelling, analogous to the standard forward/backward error analysis of Numerical Analysis, was described in a recent paper by Hoffmann and Stewart. An important subproblem within this overall approach is the well-definition of the sets specified by inconsistent data. These inconsistencies may come from the use of finite-precision real-number arithmetic, from the use of low-degree curves to approximate boundaries, or from terminating an infinite convergent (subdivision) process after only a finite number of steps.

An earlier paper, by Andersson and the present authors, showed how to resolve this problem of well-definition, in the context of standard trimmed-NURBS representations, by using the Whitney Extension Theorem. In this paper we will show how an analogous approach can be used in the context of trimmed surfaces based on combined-subdivision representations, such as those proposed by Litke, Levin and Schröder.

A further component of the problem of well-definition is ensuring that adjacent patches in a representation do not have extraneous intersections. (Here, ‘extraneous intersections’ refers to intersections, between two patches forming part of the boundary, other than prescribed intersections along a common edge or at a common vertex.) The paper also describes the derivation of a bound for normal vectors that can be used for this purpose. This bound is relevant both in the case of trimmed-NURBS representations, and in the case of combined subdivision with trimming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, L.-E., Stewart, N.F., Zidani, M.: Error analysis for operations in solid modeling in the presence of uncertainty. SIAM J. Scientific Computing 29(2), 811–826 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. (36), 63–89 (1934)

    Article  MathSciNet  Google Scholar 

  3. Litke, N., Levin, A., Schröder, P.: Trimming for subdivision surfaces. Computer Aided Geometric Design (18), 463–481 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hoffmann, C.M., Stewart, N.F.: Accuracy and semantics in shape-interrogation applications. Graphical Models 67(5), 373–389 (2005)

    Article  MATH  Google Scholar 

  5. Gould, S.H.: Variational Methods for Eigenvalue Problems. University of Toronto Press (1957)

    Google Scholar 

  6. Sewell, M.J.: Maximum and Minimum Principles, Cambridge (1987)

    Google Scholar 

  7. Coons, S.A.: Surfaces for Computer Aided Design of Space Forms. MIT Project Mac, TR-41, MIT, Cambridge, MA (June 1967)

    Google Scholar 

  8. Nielson, G.M.: A transfinite, visually continuous, triangular interpolant. In: Farin, G.E. (ed.) Geometric Modeling: Algorithms and New Trends. SIAM, Philadelphia (1987)

    Google Scholar 

  9. Gross, L., Farin, G.: A transfinite form of Sibson’s interpolant. Discrete Applied Mathematics (93), 33–50 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Biswas, A., Shapiro, V., Tsukanov, I.: Heterogeneous material modeling with distance fields. Computer Aided Geometric Design (21), 215–242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Arkiv för Matematik, Stockholm (6)(28) (1967)

    Google Scholar 

  12. McShane, E.J.: Extension of range of functions. Bull. Amer. Math. Soc. (40), 837–842 (1934)

    Article  MathSciNet  Google Scholar 

  13. Levin, A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design (16), 345–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In: Proc. ACM SIGGRAPH, pp. 395–404 (1998)

    Google Scholar 

  15. Volino, P., Thalmann, N.M.: Efficient self-collision detection on smoothly discretized surface animations using geometrical shape regularity. In: Daehlen, M., Kjelldahl, K. (eds.) Eurographics 1994, (13)(3), pp. 155–164. Blackwell Publishers, Malden (1994)

    Google Scholar 

  16. Grinspun, E., Schröder, P.: Normal bounds for subdivision-surface interference detection. In: Proceedings of the IEEE Conference on Visualization, pp. 333–340 (2001)

    Google Scholar 

  17. Andersson, L.-E., Stewart, N.F., Zidani, M.: Proof of a non-selfintersection conjecture. Computer Aided Geometric Design 23, 599–611 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)

    Google Scholar 

  19. Pressley, H.: Elementary Differential Geometry. Springer, Heidelberg (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Hertling Christoph M. Hoffmann Wolfram Luther Nathalie Revol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stewart, N.F., Zidani, M. (2008). Transfinite Interpolation for Well-Definition in Error Analysis in Solid Modelling. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85521-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85520-0

  • Online ISBN: 978-3-540-85521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics