Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5045))

Abstract

Algorithms for many geometric queries rely on representations that are comprised of combinatorial (logical, incidence) information, usually in a form of a graph or a cell complex, and geometric data that represents embeddings of the cells in the Euclidean space E d. Whenever geometric embeddings are imprecise, their incidence relationships may become inconsistent with the associated combinatorial model. Tolerant algorithms strive to compute on such representations despite the inconsistencies, but the meaning and correctness of such computations have been a subject of some controversy.

This paper argues that a tolerant algorithm usually assumes that the approximate geometric representation corresponds to a subset of E d that is homotopy equivalent to the intended exact set. We show that the Nerve Theorem provides systematic means for identifying sufficient conditions for the required homotopy equivalence, and explain how these conditions are used in the context of geometric and solid modeling.

Based on the talk at the Dagstuhl Seminar on Reliable Implementation of Real Number Algorithms: Theory and Practice, January 8-13, 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Requicha, A.A.G.: Representations for rigid solids: Theory, methods and systems. ACM Computing Surveys 12(4), 437–464 (1980)

    Article  Google Scholar 

  2. Shapiro, V.: Solid modeling. In: Farin, G., Hoschek, J., Kim, M.S. (eds.) Handbook of Computer Aided Geometric Design, pp. 473–518. Elsevier Science Publishers, Amsterdam (2002)

    Chapter  Google Scholar 

  3. Shapiro, V.: Maintenance of geometric representations through space decompositions. International Journal of Computational Geometry and Applications 7(4), 383–418 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Qi, J., Shapiro, V., Stewart, N.F.: Single-set and class-of-sets semantics for geometric models. Technical Report 2005-1, Spatial Automation Laborotary, University of Wisconsin - Madison (2005)

    Google Scholar 

  5. Tilove, R.B.: Set membership classification: A unified approach to geometric intersection problems. IEEE Transactions on Computer C-29(10) (1980)

    Google Scholar 

  6. Qi, J., Shapiro, V.: Epsilon-solidity in geometric data translation. Technical report, SAL 2004-2, Spatial Automation Laboratory, University of Wisconsin-Madison (2004)

    Google Scholar 

  7. Kettner, L., Pion, K.M., Schirra, S., Yap, S.: Classroom examples of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

    Google Scholar 

  8. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  9. Sabin, M.: Subdivision surfaces. In: Farin, G., Hoschek, J., Kim, M.S. (eds.) Handbook of Computer Aided Geometric Design, pp. 309–341. Elsevier Science Publishers, Amsterdam (2002)

    Chapter  Google Scholar 

  10. Peters, J., Wu, X.: SLEVEs for planar spline curves. Computer Aided Geometric Design 21, 615–635 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Segal, M., Sequin, C.: Consistent calculations for solids modeling. In: SCG 1985: Proceedings of the first annual symposium on Computational geometry, pp. 29–38. ACM Press, New York (1985)

    Chapter  Google Scholar 

  12. Segal, M.: Using tolerances to guarantee valid polyhedral modeling results. In: Computer Graphics (Proceedings of ACM SIGGRAPH 1990), pp. 105–114 (1990)

    Google Scholar 

  13. Jackson, D.J.: Boundary representation modelling with local tolerancing. In: Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications, Salt Lake City, Utah, pp. 247–253 (1995)

    Google Scholar 

  14. Fang, S., Bruderlin, B., Zhu, X.: Robustness in solid modeling: A tolerance-based intuitionistic approach. Computer-Aided Design 25(9), 567–576 (1993)

    Article  MATH  Google Scholar 

  15. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: Building robust algorithms from imprecise computations. In: Proceedings of the fifth ACM Symposium on Computational Geometry, Saarbruchen, West, Germany, pp. 208–217 (1989)

    Google Scholar 

  16. Shen, G., Sakkalis, T., Patrikalakis, N.M.: Analysis of boundary representation model rectification. In: Proceedings of the 6th ACM Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, pp. 149–158 (2001)

    Google Scholar 

  17. Chazal, F., Cohen-Steiner, D.: A condition for isotopic approximation. In: Proceedings of the 2004 ACM Symposium on Solid Modeling and Applications, Genova, Italy (2004)

    Google Scholar 

  18. Andersson, L.E., Stewart, N.F., Zidani, M.: Error analysis for operations in solid modeling (2004), www.iro.umontreal.ca/~stewart

  19. Hoffmann, C.M., Stewart, N.F.: Accuracy and semantics in shape-interrogation applications. Graphical Models (to appear, 2005)

    Google Scholar 

  20. Song, X., Sederberg, T.W., Zheng, J., Farouki, R.T., Hass, J.: Linear perturbation methods for topologically consistent representations of free-form surface intersections. Computer Aided Geometric Design 21(3), 303–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. O’Connor, M.A., Rossignac, J.R.: SGC: A dimension independent model for pointsets with internal structures and incomplete boundaries. In: IFIP/NSF Workshop on Geometric Modeling, Rensselaerville, NY, 1988, North-Holland, Amsterdam (1990)

    Google Scholar 

  22. Grandine, T.A., Frederick, W., Klein, I.: A new approach to the surface intersection problem. Comput. Aided Geom. Des. 14(2), 111–134 (1997)

    Article  MATH  Google Scholar 

  23. Sakkalis, T., Peters, T.J., Bisceglio, J.: Isotopic approximations and interval solids. Computer-Aided Design 36, 1089–1100 (2004)

    Article  Google Scholar 

  24. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton (1997)

    Google Scholar 

  25. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented implementation - an approach to robust geometric algorithms. Algorithmica 27(1), 5–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bjorner, A.: Topological methods. In: Graham, R., Grotschel, M., Lovacz, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. Elsevier Science B.V, Amsterdam (1995)

    Google Scholar 

  27. Alexandrov, P.: Gestalt u. lage abgeschlossener menge. The Annals of Mathematics 30, 101–187 (1928)

    Article  Google Scholar 

  28. Hocking, J.G., Young, G.S.: Topology. Dover Publications, New York (1961)

    MATH  Google Scholar 

  29. Dey, T., Edelsbrunner, H., Guha, S.: Computational topology. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry (Contemporary mathematics 223), pp. 109–143. American Mathematical Society (1999)

    Google Scholar 

  30. Maunder, C.R.F.: Algebraic Topology. Dover Publications, New York (1996)

    Google Scholar 

  31. Mehlhorn, K., Yap, C.: Robust Geometric Computation (tentative). Book draft, under preparation (2004), http://www.cs.nyu.edu/~yap/book/egc/

  32. Egenhofer, M., Clementini, E., di Felice, P.: Evaluating inconsistencies among multiple representations. In: Sixth International Symposium on Spatial Data Handling, Edinburgh, Scotland, pp. 901–920 (1994)

    Google Scholar 

  33. Kang, H.K., Kim, T.W., Li, K.J.: Topological consistency for collapse operation in multi-scale databases. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 91–102. Springer, Heidelberg (2004)

    Google Scholar 

  34. Armstrong, C.G.: Integrating analysis and design - thoughts for the future. In: State of the Art in CAD/FE Integration - NAFEMS Awareness Seminar, Chester, UK (2002), http://sog1.me.qub.ac.uk/Resources/publications/publications.php

  35. Qi, J., Shapiro, V.: Epsilon-topological formulation of tolerant solid modeling. Computer-Aided Design 38(4), 367–377 (2006)

    Article  Google Scholar 

  36. Sakkalis, T., Shen, G., Patrikalakis, N.M.: Topological and geometric properties of interval solid models. Graphical Models 63(3), 163–175 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Hertling Christoph M. Hoffmann Wolfram Luther Nathalie Revol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shapiro, V. (2008). Homotopy Conditions for Tolerant Geometric Queries. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85521-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85520-0

  • Online ISBN: 978-3-540-85521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics