Skip to main content

Megaplasmids of Aerobic Hydrogenotrophic and Carboxidotrophic Bacteria

  • Chapter

Part of the book series: Microbiology Monographs ((MICROMONO,volume 11))

Abstract

The hydrogen-oxidizing bacterium Ralstonia eutropha H16 and the carbon monoxide-oxidizing bacterium Oligotropha carboxidovorans OM5 carry key genetic determinants for their respective forms of lithoautotrophic metabolism on megaplasmids. In R. eutropha H16 genetic information for the H2-oxidizing system and for CO2 fixation via the Calvin—Benson—Bassham cycle is located on the 452-kb megaplasmid pHG1. In addition, pHG1 harbors clusters of genes for denitrification and for degradation of aromatic compounds. The 133-kb megaplasmid pHCG3 is the genetic basis for CO oxidation in O. carboxidovorans OM5. Aside from the aerobic CO dehydrogenase, pHCG3 also encodes Calvin cycle enzymes and a dimeric hydrogenase. In both cases there is an interdigitation of megaplasmid-based and chromosomally encoded functions, indicating that these megaplasmids are, although not strictly essential for viability, an integral part of the genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen K, Tait RC, King WR (1981) Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus. Arch Microbiol 129:384–390

    Article  CAS  Google Scholar 

  • Arp DJ (1992) Hydrogen recycling in symbiotic bacteria. In: Stacey GS, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 432–460

    Google Scholar 

  • Behki RM, Selvaraj G, Iyer VN (1983) Hydrogenase and ribulose-1, 5-bisphosphate carboxylase activities of Alcaligenes eutrophus ATCC 17706 associated with an indigenous plasmid. Can J Microbiol 29:767–774

    Article  CAS  Google Scholar 

  • Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 178:4522–4529

    CAS  PubMed  Google Scholar 

  • Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B (1997) Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur J Biochem 248:179–186

    Article  CAS  PubMed  Google Scholar 

  • Bernhard M, Friedrich B, Siddiqui RA (2000) Ralstonia eutropha TF93 is blocked in Tat-mediated protein export. J Bacteriol 182:581–588

    Article  CAS  PubMed  Google Scholar 

  • Bernhard M, Buhrke T, Bleijlevens B, De Lacey AL, Fernandez VM, Albracht SP, Friedrich B (2001) The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J Biol Chem 276:15592–15597

    Article  CAS  PubMed  Google Scholar 

  • Bignell C, Thomas CM (2001) The bacterial ParA–ParB partitioning proteins. J. Biotechnol 91:1–34

    Article  CAS  PubMed  Google Scholar 

  • Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SP (2004) The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691

    Article  CAS  PubMed  Google Scholar 

  • Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    Article  PubMed  CAS  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331

    Article  CAS  PubMed  Google Scholar 

  • Bowien B, Kusian B (2002) Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93

    Article  CAS  PubMed  Google Scholar 

  • Buhrke T, Lenz O, Porthun A, Friedrich B (2004) The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Mol Microbiol 51:1677–1689

    Article  CAS  PubMed  Google Scholar 

  • Buhrke T, Löscher S, Lenz O, Schlodder E, Zebger I, Andersen LK, Hildebrandt P, Meyer-Klaucke W, Dau H, Friedrich B, Haumann M (2005) Reduction of unusual iron-sulfur clusters in the H2-sensing regulatory Ni-Fe hydrogenase from Ralstonia eutropha H16. J Biol Chem 280:19488–19495

    Article  CAS  PubMed  Google Scholar 

  • Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B (2005a) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–96

    Article  CAS  Google Scholar 

  • Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SP, Friedrich B (2005b) The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187:3122–3132

    Article  CAS  Google Scholar 

  • Cangelosi GA, Wheelis ML (1984) Regulation by molecular oxygen and organic substrates of hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 159:138–144

    CAS  PubMed  Google Scholar 

  • Chandra TS, Friedrich CG (1986) Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J Bacteriol 166:446–452

    CAS  PubMed  Google Scholar 

  • Conrad R, Seiler W (1979) Role of hydrogen bacteria during the decomposition of hydrogen by soil. FEMS Microbiol Lett 6:143–145

    Article  CAS  Google Scholar 

  • Cramm R, Siddiqui RA, Friedrich B (1994) Primary sequence and evidence for a physiological function of the flavohemoprotein of Alcaligenes eutrophus. J Biol Chem 269:7349–7354

    CAS  PubMed  Google Scholar 

  • Cramm R, Siddiqui RA, Friedrich B (1997) Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol 179:6769–6777

    CAS  PubMed  Google Scholar 

  • Cramm R, Pohlmann A, Friedrich B (1999) Purification and characterization of the single-component nitric oxide reductase from Ralstonia eutropha H16. FEBS Lett 460:6–10

    Article  CAS  PubMed  Google Scholar 

  • Crutzen PJ, Gidel LT (1983) A two-dimensional photochemical model of the atmosphere. 2. the tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3 Cl and the effect of various NOx sources on tropospheric ozone. J Geophys Res 88:6641–6661

    Article  CAS  Google Scholar 

  • Cunningham SD, Kapulnik Y, Phillips DA (1986) Distribution of hydrogen-metabolizing bacteria in alfalfa field soil. Appl Environ Microbiol 52:1091–1095

    CAS  PubMed  Google Scholar 

  • Cypionka H, Meyer O (1983a) Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans. J Bacteriol 156:1178–1187

    CAS  Google Scholar 

  • Cypionka H, Meyer O (1983b) The cytochrome composition of carboxydotrophic bacteria. Arch Microbiol 135:293–298

    Article  CAS  Google Scholar 

  • Dernedde J, Eitinger T, Patenge N, Friedrich B (1996) hyp gene products in Alcaligenes eutrophus are part of a hydrogenase-maturation system. Eur J Biochem 235:351–358

    Article  CAS  PubMed  Google Scholar 

  • Dobbek H, Gremer L, Meyer O, Huber R (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96:8884–8889

    Article  CAS  PubMed  Google Scholar 

  • Dobbek H, Gremer L, Meyer O, Hubber R (2001) CO dehydrogenase. In: Messerschmidt A, Hubber R, Poulos T, Wieghardt, K (eds) Handbook of Metalloproteins. Wiley, Chichester, pp 1136–1147

    Google Scholar 

  • Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution. Proc Natl Acad Sci USA 99:15971–15976

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Wu L, Kettlewell B, Caldwell CD, Layzell DB (2003) Hydrogen fertilization of soils — is this a benefit of legumes in rotation? Plant Cell Environ 26:1875–1879

    Article  CAS  Google Scholar 

  • Eberz G, Friedrich B (1991) Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus. J Bacteriol 173:1845–1854

    CAS  PubMed  Google Scholar 

  • Eitinger T, Suhr J, Moore L, Smith JA (2005) Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18:399–405

    Article  CAS  PubMed  Google Scholar 

  • Erb RW, Timmis KN, Pieper DH (1998) Characterization of a gene cluster from Ralstonia eutropha JMP134 encoding metabolism of 4-methylmuconolactone. Gene 206:53–62

    Article  CAS  PubMed  Google Scholar 

  • Forzi L, Sawers RG (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. Biometals 20:565–578

    Article  CAS  PubMed  Google Scholar 

  • Friedrich B, Buhrke T, Burgdorf T, Lenz O (2005) A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Biochem Soc Trans 33:97–101

    Article  CAS  PubMed  Google Scholar 

  • Friedrich B, Friedrich CG (1990) Hydrogenases in lithoautotrophic bacteria. In: Codd GA, Dijkhuizen L, Tabita FR (eds) Autotrophic microbiology and one-carbon metabolism. Kluwer, Dordrecht, pp 55–92

    Google Scholar 

  • Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205

    CAS  PubMed  Google Scholar 

  • Friedrich B, Friedrich CG, Meyer M, Schlegel HG (1984) Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange. J Bacteriol 158:331–333

    CAS  PubMed  Google Scholar 

  • Friedrich B, Kortlüke C, Hogrefe C, Eberz G, Silber B, Warrelmann J (1986) Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie 68:133–145

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann S, Ferner M, Jeffke T, Henne A, Gottschalk G, Meyer O (2003) Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2 Gene 322:67–75

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21

    Article  CAS  PubMed  Google Scholar 

  • Gerstenberg C, Friedrich B, Schlegel HG (1982) Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch Microbiol 133:90–96

    Article  CAS  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legume symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Gnida M, Ferner R, Gremer L, Meyer O, Meyer-Klaucke W (2003) A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy. Biochemistry 42:222–230

    Article  CAS  PubMed  Google Scholar 

  • Grzeszik C, Jeffke T, Schäferjohann J, Kusian B, Bowien B (2000) Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. J Mol Microbiol Biotechnol 2:311–320

    CAS  PubMed  Google Scholar 

  • Hanus FJ, Maier RJ, Evans HJ (1979) Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas. Proc Natl Acad Sci USA 76:1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Hogrefe C, Friedrich B (1984) Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12:161–169

    Article  CAS  PubMed  Google Scholar 

  • Hogrefe C, Römermann D, Friedrich B (1984) Alcaligenes eutrophus hydrogenase genes (Hox). J Bacteriol 158:43–48

    CAS  PubMed  Google Scholar 

  • Kalkus J, Reh M, Schlegel HG (1990) Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J Gen Microbiol 136:1145–1151

    CAS  PubMed  Google Scholar 

  • Kelly DP, Wood AP (2006) The chemolithotrophic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 441–456

    Google Scholar 

  • Khalil MAK, Pinto JP, Shearer MJ (1999) Atmospheric carbon monoxide Chemosphere 1:xi–xiii

    Google Scholar 

  • King GM (1999) Characteristics and significance of atmospheric carbon monoxide consumption by soils. Chemosphere 1:53–63

    CAS  Google Scholar 

  • King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118

    Article  CAS  PubMed  Google Scholar 

  • Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B (2000) The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 182:2716–2724

    Article  CAS  PubMed  Google Scholar 

  • Klüber HD, Lechner S, Conrad R (1995) Characterization of populations of aerobic hydrogen-oxidizing soil bacteria. FEMS Microbiol Ecol 16:167–175

    Google Scholar 

  • Kortlüke C, Horstmann K, Schwartz E, Rohde M, Binsack R, Friedrich B (1992) A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 174:6277–6289

    PubMed  Google Scholar 

  • Kraft I, Bock E (1984) Plasmids in Nitrobacter Arch Microbiol 140:79–82

    Article  CAS  Google Scholar 

  • Kraut M, Meyer O (1988) Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Arch Microbiol 149:540–546

    Article  CAS  Google Scholar 

  • Kusian B, Bednarski R, Husemann M, Bowien B (1995) Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J Bacteriol 177:4442–4450

    CAS  PubMed  Google Scholar 

  • La Favre JS, Focht DD (1983) Conservation in soil of H2 liberated from N2 fixation by Hup nodules. Appl Environ Microbiol 46:304–311

    PubMed  Google Scholar 

  • Lechner S, Conrad R (1997) Detection in soil of aerobic hydrogen-oxidizing bacteria related to Alcaligenes eutrophus by PCR and hybridization assays targeting the gene of the membranebound (NiFe) hydrogenase. FEMS Microbiol Ecol 22:193–206

    Article  CAS  Google Scholar 

  • Leimkühler S, Klipp W (1999) Role of XDHC in Molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. J Bacteriol 181:2745–2751

    PubMed  Google Scholar 

  • Lenz O, Friedrich B (1998) A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci USA 95:12474–12479

    Article  CAS  PubMed  Google Scholar 

  • Lenz O, Zebger I, Hamann J, Hildebrandt P, Friedrich B (2007) Carbamoylphosphate serves as the source of CN-, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. FEBS Lett 581:3322–3326

    Article  CAS  PubMed  Google Scholar 

  • MacLellan SR, Smallbone LA, Sibley CD, Finan TM (2005) The expression of a novel antisense gene mediates incompatibility within the large repABC family of α-proteobacterial plasmids. Mol Microbiol 55:611–23

    Article  CAS  PubMed  Google Scholar 

  • MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM (2006) Identification of a mega-plasmid centromere reveals genetic structural diversity within the repABC family of basic replicons. Mol Microbiol 59:1559–1575

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Gest H (1979) Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol 137:524–530

    CAS  PubMed  Google Scholar 

  • Maimaiti J, Zhang Y, Yang J, Cen YP, Layzell DB, Peoples M, Dong Z (2007) Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol 9:435–444

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Abarca F, Garcia-Rodriguez FM, Toro N (2000) Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol Microbiol 35:1405–1412

    Article  PubMed  Google Scholar 

  • Massanz C, Friedrich B (1999) Amino acid replacements at the H2-activating site of the NAD-reducing hydrogenase from Alcaligenes eutrophus Biochemistry 38:14330–14337

    Article  CAS  Google Scholar 

  • Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2008) Megaplasmids in Cupriavidus genus and metal resistance. 10.1007/7171_2008_19

    Google Scholar 

  • Meyer O (1989) Aerobic, carbon monoxide-oxidizing bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, Madison, pp 331–350

    Google Scholar 

  • Meyer O, Frunzke K, Mörsdorf G (1993) Biochemistry of aerobic utilization of carbon monoxide. In: Murrel JC, Kelley DP (eds) Microbial growth on C1 compounds. Intercept, Andover, pp 433–459

    Google Scholar 

  • Meyer O, Gremer L, Ferner R, Ferner M, Dobbek H, Gnida M, Meyer-Klaucke W, Huber R (2000) The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol Chem 381:865–876

    Article  CAS  PubMed  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  CAS  PubMed  Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526

    Article  CAS  PubMed  Google Scholar 

  • Nikolskaya AN, Galperin MY (2002) A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res 30:2453–2459

    Article  CAS  PubMed  Google Scholar 

  • Ohi K, Takada N, Komemushi S, Okazaki M, Miura Y (1979) A new species of hydrogen-utilizing bacterium. J Gen Appl Microbiol 25:53–58

    Article  CAS  Google Scholar 

  • Pierik AJ, Schmelz M, Lenz O, Friedrich B, Albracht SP (1998) Characterization of the active site of a hydrogen sensor from Alcaligenes eutrophus. FEBS Lett 438:231–235

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann A, Cramm R, Schmelz K, Friedrich B (2000) A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol Microbiol 38:626–638

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Rees E, Siddiqui RA, Köster F, Schneider B, Friedrich B (1997) Structural gene (nirS) for the cytochrome cd1 nitrite reductase of Alcaligenes eutrophus H16. Appl Environ Microbiol 63:800–802

    CAS  PubMed  Google Scholar 

  • Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T (2006) Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 188:317–327

    Article  CAS  PubMed  Google Scholar 

  • Rohde M, Mayer F, Meyer O (1984) Immunocytochemical localization of carbon monoxide oxidase in Pseudomonas carboxydovorans. The enzyme is attached to the inner aspect of the cytoplasmic membrane. J Biol Chem 259:14788–14792

    CAS  PubMed  Google Scholar 

  • Rohde M, Mayer F, Jacobitz S, Meyer O (1985) Attachment of CO dehydrogenase to the cytoplasmic membrane is limiting the respiratory rate of Pseudomonas carboxydovorans. FEMS Microbiol Lett 28:141–144

    Article  CAS  Google Scholar 

  • Romero D, Brom S (2004) The Symbiotic Plasmids of the Rhizobiaceae. In: Funnel BE, Phillips GJ (eds) Plasmid Biology. ASM Press, Washington DC, pp 271–290

    Google Scholar 

  • Santiago B, Schübel U, Egelseer C, Meyer O (1999) Sequence analysis, characterization and CO-specific transcription of the cox gene cluster on the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 236:115–124

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG, Bowien B (eds) (1989) Autotrophic bacteria. Science Tech Publishers, Madison

    Google Scholar 

  • Schneider B, Nies A, Friedrich B (1988) Transfer and expression of lithoautotrophy and denitrification in a host lacking these metabolic activities. Appl Environ Microbiol 54:3173–3176

    CAS  PubMed  Google Scholar 

  • Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452:66–80

    CAS  PubMed  Google Scholar 

  • Schneider K, Cammack R, Schlegel HG, Hall DO (1979) The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim Biophys Acta 578:445–461

    CAS  PubMed  Google Scholar 

  • Schneider K, Pinkwart M, Jochim K (1983) Purification of hydrogenases by affinity chromatography on Procion Red-agarose. Biochem J 213:391–398

    CAS  PubMed  Google Scholar 

  • Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467

    Article  CAS  PubMed  Google Scholar 

  • Schwartz E, Friedrich B (2006) The H2-metabolizing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 496–563

    Google Scholar 

  • Schwartz E, Gerischer U, Friedrich B (1998) Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180:3197–3204

    CAS  PubMed  Google Scholar 

  • Schwartz E, Buhrke T, Gerischer U, Friedrich B (1999) Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 181:5684–5692

    CAS  PubMed  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based ithoautotrophy and anaerobiosis. J Mol Biol 332:369–383

    Article  CAS  PubMed  Google Scholar 

  • Sensfuss C, Reh M, Schlegel HG (1986) No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. J Gen Microbiol 132:997–1007

    CAS  PubMed  Google Scholar 

  • Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175:5867–5876

    CAS  PubMed  Google Scholar 

  • Siedow A, Cramm R, Siddiqui RA, Friedrich B (1999) A megaplasmid-borne anaerobic ribonucleotide reductase in Alcaligenes eutrophus H16. J Bacteriol 181:4919–4928

    CAS  PubMed  Google Scholar 

  • Siefert E, Pfennig N (1979) Chemoautotrophic growth of rhodopseudomonas species with hydrogen and chemotrophic utilization of methanol and formate. Arch Microbiol 122:177–182

    Article  CAS  Google Scholar 

  • Starkenburg SR, Larimer FW, Stein LY, Klotz MG, Chain PS, Sayavedra-Soto LA, Poret-Peterson AT, Gentry ME, Arp DJ, Ward B, Bottomley PJ (2008) The complete genome sequence of Nitrobacter hamburgensis X14 and a comparative genomic analysis of species within the Genus Nitrobacter Appl Environ Microbiol 74:2852–2863

    Article  CAS  Google Scholar 

  • Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O'huallachain ME, Lince MT, Blankenship RE, Beatty JT, Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189:683–690

    Article  CAS  PubMed  Google Scholar 

  • Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    CAS  PubMed  Google Scholar 

  • Thiemermann S, Dernedde J, Bernhard M, Schroeder W, Massanz C, Friedrich B (1996) Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product. J Bacteriol 178:2368–2374

    CAS  PubMed  Google Scholar 

  • Timotius K, Schlegel HG (1987) [Nickel-resistent bacteria isolated from sewage]. Nachrichten der Akademie der Wissenschaften in Göttingen. II Mathematisch-Physikalische Klasse. 3:1–9

    Google Scholar 

  • Tran-Betcke A, Warnecke U, Böcker C, Zaborosch C, Friedrich B (1990) Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16. J Bacteriol 172:2920–2929

    CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    CAS  PubMed  Google Scholar 

  • Warrelmann J, Friedrich B (1989) Large plasmids in wild type strains of Pseudomonas facilis. Endocytobiosis Cell Res 6:213–217

    Google Scholar 

  • Wolf I, Buhrke T, Dernedde J, Pohlmann A, Friedrich B (1998) Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 170:451–459

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (2005) Biogenesis of the bacterial respiratory CuA, Cu-S enzyme nitrous oxide reductase. J Mol Microbiol Biotechnol 10:154–166

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG, Dreusch A, Löchelt S, Cuypers H, Friedrich B, Schneider B (1992) Derived amino acid sequences of the nosZ gene (respiratory N2 O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2 O reductase and cytochrome-c oxidase. Eur J Biochem 208:31–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to R. Cramm, H. Dobbek, T. Eitinger, B. Friedrich and O. Lenz for critical reading of the manuscript and to O. Lenz and B. Kusian for providing illustrations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwartz, E. (2009). Megaplasmids of Aerobic Hydrogenotrophic and Carboxidotrophic Bacteria. In: Schwartz, E. (eds) Microbial Megaplasmids. Microbiology Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85467-8_11

Download citation

Publish with us

Policies and ethics