Skip to main content

Taking the Concept to the Limit: Uncultivable Bacteria and Astrobiology

  • Chapter
  • First Online:
Uncultivated Microorganisms

Part of the book series: Microbiology Monographs ((MICROMONO,volume 10))

Abstract

Cultivating microbes is enough of a challenge when one knows they are there: the microbial world is rife with examples of bugs that are clearly growing in nature, yet seem to be uncultivable despite our best efforts. While many of these clearly cultivable “uncultivables” defy our efforts, as a group these microbes may provide some valuable clues and lessons for those who would venture into the world of the search for extraterrestrial life. That is to say, careful consideration of how one might recognize and/or cultivate ET organisms might yield some insights into the more realistic question of how to find and cultivate life in earthly habitats – after all, our ability to cultivate microbes that we can clearly see are capable of growth has been disappointing to say the least. Thus, an open-minded approach to why our own earthly efforts have yielded such limited success might well be used to formulate a strategy for the cultivation of ET life, and perhaps more importantly, to improve our efforts to cultivate life from our own planet. And incidentally, should we be so fortunate as to ever obtain uncontaminated extraterrestrial samples, we will be ready!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker BJ, Tyson GW et al (2006) Lineages of acidophilic Archaea revealed by community genomic analysis. Science 314:1933–1935

    Article  PubMed  CAS  Google Scholar 

  • Beja O, Aravind L et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Leadbetter JR (2002) Termite gut spirochetes. In: Dworkin M, Falkow S, Rosenberg E, Schliefer KH, Stackebrandt E (eds) The Prokaryotes – an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  • Brownlie JC, O'Neill SL (2006) Wolbachia genomes: insights into an intracellular lifestyle. Curr Biol 15:R507–R509

    Article  Google Scholar 

  • D'Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070

    Article  PubMed  Google Scholar 

  • D'Hondt S, Joergensen BB et al (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Article  PubMed  Google Scholar 

  • Dorn ED (2005) Universal biosignatures for the detection of life. Computer Sciences. Pasadena, California Institute of Technology, California, p 123

    Google Scholar 

  • Dorn ED, McDonald GD et al (2003) Principal component analysis and neural networks for detection of amino acid biosignatures. Icarus 166(2):403–409

    Article  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Gomez-Consarnau L, Gonzalez JM et al (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  PubMed  CAS  Google Scholar 

  • Haygood MG, Tebo BM et al (1984) Luminous bacteria of a monocentrid fish (Monocentris-Japonicus) and 2 anomalopid fishes (Photoblepharon-Palpebratus and Kryptophanaron-Alfredi) – population sizes and growth within the light organs, and rates of release into the seawater. Mar Biol 78(3):249–254

    Article  Google Scholar 

  • Huber H, Hohn MI et al (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Takai K et al (2003) Sulfurimonas autotrophica gen. nov., sp nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the mid-Okinawa trough. Int J Syst Evol Micr 53:1801–1805

    Article  CAS  Google Scholar 

  • Inagaki F, Takai K et al (2004) Sulfrovum lithotrophicum gen.nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments from the mid-Okinawa trough. Int J Syst Evol Microbiol 54:1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA (2001) Life – potential, slow, or long dead? Science 294:1820–1821

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA (2002) Deep life in the slow, slow lane. Science 296:1056–1058

    Article  PubMed  CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Freeman, San Francisco

    Google Scholar 

  • Moran NA, Degnan PH (2006) Functional genomics of Buchnera and the ecology of aphid hosts. Mol Ecol 15:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Morin JG, Harrington A et al (1975) Light for all reasons – versatility in behavioral repertoire of flashlight fish. Science 190(4209):74–76

    Google Scholar 

  • Nealson K (2001) Searching for life in the universe: lessons from the Earth. Ann N Y Acad Sci 950:241–258

    Article  PubMed  CAS  Google Scholar 

  • Nealson K, Berelson W (2009) Sedimentary habitats. In: Schaechter M (ed) Desk encyclopedia of microbiology. Academic, London, p 800

    Google Scholar 

  • Nealson K, Berelson W (2003) Layered microbial communities and the search for life in the universe. Geomicrobiol J 20:451–462

    Article  Google Scholar 

  • Nealson KH, Conrad PG (1999) Life: past, present and future. Phil Trans R Soc Lond B 354:1–17

    Article  Google Scholar 

  • Nealson KH, Cox BL (2002) Microbial metal-ion reduction and Mars: extraterrestrial expectations? Curr Opin Microbiol 5:296–300

    Article  PubMed  CAS  Google Scholar 

  • Nealson KH, Haygood MG et al (1984) Contribution by symbiotically luminous fishes to the occurrence and bioluminescence of luminous bacteria in seawater. Microb Ecol 10(1):69–77

    Article  Google Scholar 

  • Nealson KH, Tsapin A, Storrie-Lombardi M (2002) Searching for life in the Universe: unconventional methods for an unconventional problem. Int Microbiol 5:223–230

    Article  PubMed  CAS  Google Scholar 

  • O'Neill SL, Giordano R et al (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89:2699–2672

    Article  PubMed  Google Scholar 

  • Olsen GJ, Woese CR et al (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    PubMed  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere in a Yellowstone hot spring. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Schink B, Stams AJM (2002) Syntrophism among prokaryotes. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  • Schippers A, Neretin LN et al (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Spudich JL et al (2006) Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol 14:463–469

    Article  PubMed  CAS  Google Scholar 

  • Shungu D, Valiant M et al (1983) Gelrite as an agar substitute in bacteriological media. Appl Environ Microbiol 46(4):840–845

    PubMed  CAS  Google Scholar 

  • Sneath PHA (1992) International code of nomenclature of bacteria: bacteriological code, 1990 revision. American Society Microbiology, Washington, DC

    Google Scholar 

  • Stingl U, Radek R et al (2005) Endomicrobia: cytoplasmic symbionts of termite gut protozoa from a separate phylum of prokaryotes. Appl Environ Microbiol 71:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquifales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Inagaki F et al (2003a) Isolation and phylogenetic diversity of members of previously uncultivated epsilon-proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218(1):167–174

    CAS  Google Scholar 

  • Takai K, Kobayashi H et al (2003b) Deferribacter desulfuricans sp nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846

    Article  CAS  Google Scholar 

  • Takai K, Nealson KH et al (2004) Hydrogenimonas thermophila gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K et al (2004) Environmental genome shotgun sequencing of the Sargasso sea. Science 304(5667):66–74

    Article  PubMed  CAS  Google Scholar 

  • Waters E, Hohn MJ et al (2003) The genome of Nanoarchaeum equitans: insights into early archael evolution and derived parasitism. Proc Natl Acad Sci U S A 100:12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Whitman BW, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (2004) A new biology for a new century. Micorbiol Mol Biol Rev 68:173–186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Nealson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nealson, K. (2009). Taking the Concept to the Limit: Uncultivable Bacteria and Astrobiology. In: Epstein, S. (eds) Uncultivated Microorganisms. Microbiology Monographs, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85465-4_9003

Download citation

Publish with us

Policies and ethics