Skip to main content

Acetic Acid Bacteria (AAB) are considered one of the most common wine spoilage microorganisms and a threat for the oenologists. Their ability to transform most of the sugars and alcohols into organic acids produces easily the transformation of glucose into gluconic acid in damaged grapes and ethanol or glycerol into acetic acid or dihydroxyacetone in wines. As a result of their strictly aerobic metabolism and high dependence to oxygen, acetic acid bacteria population is highly reduced during the must fermentation, with only few strains able to survive. However, wine aeration during oenological practices after alcoholic fermentation can activate their metabolism and increase their population with risks of acetic acid production. Inappropriate long term wine storage and bottling conditions may also activate the acetic acid production. Good cellar practices such as high hygiene, microbiological control, oxygen limitation, reduction of porous surfaces reduce considerably the risks of wine spoilage by acetic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbe JC, De Revel G, Joyeux A, Bertrand A, Lonvaud-Funel A (2001). Role of botrytized grape micro-organisms in SO2 binding phemomena. J Appl Microbiol 90:34–42

    Article  PubMed  CAS  Google Scholar 

  • Bartowsky EJ, Xia D, Gibson RL, Fleet GH, Henschke PA (2003). Spoliage of bottled red wine by acetic acid bacteria. Lett Appl Microbiol 36:307–314

    Article  PubMed  CAS  Google Scholar 

  • Blasco L, Ferrer S, Pardo I (2003). Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol Lett 225:115–123

    Article  PubMed  CAS  Google Scholar 

  • Cleenwerk I, Vandemeulebroecke K, Janssens D, Swings J (2002). Reexamination of the genus Acetobacter, with descriptions of Acetobacter cerevisiaesp. nov. and Acetobacter malorum, sp. nov. Int J Syst Evol Microbiol 52:1551–1558

    Article  CAS  Google Scholar 

  • De Ley J, Gossele F, Swings J (1984) Genus I Acetobacter. In: Krieg NR, Holt JG (eds.) Bergey's Manual of Systematic Bacteriology, vol. 1. Williams & Wilkins, Baltimore, MD, pp. 268–274

    Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacterstrains. Appl Microbiol Biotechnol 60:233–242

    Article  PubMed  CAS  Google Scholar 

  • De Vero L, Gala E, Gullo M, Solieri L, Landi S, Giudici P (2006) Application of denaturing gradi ent gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiol 23:809–813

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van de Perre V, Vancanneyt M, De Vo s P, Cleenwerk I (2008) Validation of the (GTG)5-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125(1):79–90

    Article  PubMed  CAS  Google Scholar 

  • Drysdale GS, Fleet GH (1985). Acetic acid bacteria in some Australian wines. Food Technol Aust 37:17–20

    CAS  Google Scholar 

  • Drysdale GS, Fleet GH (1988) Acetic acid bacteria in winemaking: A Review. Am J Enol Vitic 39:143–154

    CAS  Google Scholar 

  • Drysdale GS, Fleet GH (1989a) The effect of acetic acid bacteria upon the growth and metabolism of yeast during the fermentation of grape juice. J Appl Bacteriol 67:471–481

    CAS  Google Scholar 

  • Drysdale GS, Fleet GH (1989b) The growth and survival of acetic acid bacteria in wines at different concentrations of oxygen. Am J Enol Vitic 40:99–105

    CAS  Google Scholar 

  • Du Toit WJ, Lambrechts MG (2002) The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int J Food Microbiol 74:57–64

    Article  PubMed  Google Scholar 

  • Du Toit WJ, Pretorius IJ (2002) The occurrence, control and esoteric effect of acetic acid bacteria in winemaking. Ann Microbiol 52:155–179

    Google Scholar 

  • Du Toit WJ, Pretorius IJ, Lonvaud-Funel A (2005) The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianusand a strain of Brettanomyces bruxellensisisolated from wine. J Appl Microbiol 98:862–871

    Article  PubMed  CAS  Google Scholar 

  • Entani E, Ohmori S, Masai H, Suzuki K (1985) Acetobacter polyoxogenessp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490

    Article  CAS  Google Scholar 

  • Fleet GH (1993) Wine Microbiology and Biotechnology. Harwood Academic Publishers, Chur, Switzerland.

    Google Scholar 

  • Fleet GH (2001) Wine. In: Doyle, M.P., Beuchat, L.R., Montville, T.J. (eds.) Food Microbiology Fundamentals and Frontiers, 2nd ed. ASM Press, Washington, DC, pp. 267–288

    Google Scholar 

  • Franke IH, Fegan M, Hayward C, Leonard G, Stakebrandt E, Sly L (1999) Description of Gluconacetobacter saccharisp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49:1681–1693

    PubMed  CAS  Google Scholar 

  • Gammon KS, Livens S, Pawlowsky K, Rawling SJ, Chandra S, Middleton AM (2007) Development of real-time PCR methods for the rapid detection of low concentrations of Gluconobacterand Gluconacetobacterspecies in electrolyte replacement drink. Lett Appl Microbiol 44:262–267

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Hierro N, Poblet M, Rozes N, Mas A, Guillamon JM (2004) Application of molecular methods for the differentiation of acetic acid bacteria in a red wine fermentation. J Appl Microbiol 96:853–860

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Hierro N, Poblet M, Mas A, Guillamon JM (2005) Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production. Int J Food Microbiol 102:295–304

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Guillamon JM, Mas A, Poblet M (2006a). Application of molecular methods for routine identification of acetic acid bacteria. Int J Food Microbiol 108:141–146

    Article  CAS  Google Scholar 

  • Gonzalez A, Hierro N, Poblet M, Mas A, Guillamon JM (2006b) Enumeration and detection of acetic acid bacteria by real-time and nested polymerase chain reactions. FEMS Microbiol Lett 254:123–128

    Article  CAS  Google Scholar 

  • Grossman MK, Becker R (1984) Investigations on bacterial inhibition of wine fermentation. Kellerwirtschaf 10:272–275

    Google Scholar 

  • Guillamon JM, Gonzalez A, Poblet M, Mas A (2002) Development of molecular techniques for the analysis of acetic acid bacteria in winemaking. In: Yeast—Bacteria Interactions. Lallemand Technical Meetings, 10. Lallemand, SA, pp. 45–49

    Google Scholar 

  • Gullo M, Caggia C, De Vero L, Giudici P (2006) Characterisation of acetic acid bacteria in traditional balsamic Vinegar. Int J Food Microbiol 106:209–212

    Article  PubMed  CAS  Google Scholar 

  • Holt JM, Krieg NR, Sneath PHA, Staley JY, Williams ST (1994) Genus Acetobacterand Gluconobacter. In: Holt GH (ed.) Bergey's Manual of Determinative Bacteriology, 9th ed. Williams and Wilkins, Baltimore, MD, pp. 71–84

    Google Scholar 

  • Joyeux A, Lafon-Lafourcade S, Ribereau-Gayon P (1984a) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48, 153–156

    CAS  Google Scholar 

  • Joyeux A, Lafon-Lafourcade S, Ribereu-Gayon P (1984b) Metabolism of acetic acid bacteria in grape must: consequences on alcoholic and malolactic fermentation. Sciences des Aliments 4:247–255

    CAS  Google Scholar 

  • Kösebalan F, Özingen M (1992) Kinetics of wine spoilage by acetic-acid bacteria. J Chem Technol Biotechnol 55:59–63

    Google Scholar 

  • Kouda T, Naritomi T, Yano H, Yoshinaga R (1997) Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacterin aerated and agitated culture. J Ferment Bioeng 82:124–127

    Article  Google Scholar 

  • Llauradó J, Rozés N, Bobet R, Mas A, Constantí M (2002) Low temperature alcoholic fermentations in high sugar concentration grapemusts. J Food Sci 67:268–273

    Article  Google Scholar 

  • Millet V, Lonvaud-Funel A (2000) The viable but non-culturable state of wine microorganisms during storage. Lett Appl Microbiol 30:126–141

    Article  Google Scholar 

  • Nanda K, Taniguchi M, Ujike S, Ishihara N, Mori H, Ono H, Murooka Y (2001) Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Appl Environ Microbiol 67:986–990

    Article  PubMed  CAS  Google Scholar 

  • Perez-Magarino S, Sanchez-Iglesias M, Ortega-Heras M, Gonzalez-Huerta C, Gonzalez-Sanjose ML (2007) Colour stabilization of red wines by microoxygenation treatment before malolactic fermentation. Food Chem 101:881–893

    Article  CAS  Google Scholar 

  • Plata C, Mauricio JC, Millan C, Ortega JM (2005) Influence of glucose and oxygen on the production of ethyl acetate and isoamyl acetate by a Saccharomyces cerevisiaestrain during alcoholic fermentation. World J Microbiol Biotechnol 21:115–121

    Article  CAS  Google Scholar 

  • Poblet M, Rozes N, Guillamon JM, Mas A (2000) Identification of acetic acid bacteria by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA. Lett Appl Microbiol 31:63–67

    Article  PubMed  CAS  Google Scholar 

  • Prieto C, Jara C, Mas A, Romero J (2007) Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. Int J Food Microbiol 115:348–355

    Article  PubMed  CAS  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11:316–327

    Article  Google Scholar 

  • Ribereau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2000) Handbook of Enology, vol. 1. The Microbiology of Wine and Vinifications. Wiley, West Sussex, England.

    Google Scholar 

  • Ruiz A, Poblet M, Mas A, Guillamon JM (2000) Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S-23S rDNA intergenic spacer. Int J Syst Evol Microbiol 50:1981–1987

    PubMed  CAS  Google Scholar 

  • Sievers M, Lorenzo A, Gianotti S, Boesch C, Teuber M (1996) 16–23S ribosomal RNA spacer regions of Acetobacter europaeusand A. xylinum, tRNA genes and antitermination sequences. FEMS Microbiol Lett 142:43–48

    Article  PubMed  CAS  Google Scholar 

  • Silva LR, Cleenwerck I, Rivas R, Swings J, Trujillo ME, Willems A, Velazquez E (2006) Acetobacter oenisp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56:21–24

    Article  PubMed  CAS  Google Scholar 

  • Sokollek SJ, Hertel C, Hammes WP (1998) Description of Acetobacter oboedienssp. nov. and Acetobacter pomorumsp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940

    Article  PubMed  CAS  Google Scholar 

  • Subden RE, Husnik JI, van Twest R, van der Merwe G, van Vuuren HJJ (2003) Autochthonus microbial population in a Niagara Peninsula icewine must. Food Res Int 36:747–751

    Article  Google Scholar 

  • Swings J, De Ley J (1981) The genera Acetobacterand Gluconobacter. In: Starr MP (ed.) The Prokaryotes. Springer, Berlin, pp. 771–778

    Google Scholar 

  • Torija MJ, Rozès N, Poblet M, Guillamón JM, Mas A (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol 80:47–53 Trcek J (2005) Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydro-genase gene. Syst Appl Microbiol 28:735–745

    Article  PubMed  CAS  Google Scholar 

  • Trcek J (2005) Quick identification of acetic acid bacteria based on nucleotide sequences of the 16S-23S rDNA internal transcribed spacer region and of the PQQ-dependent alcohol dehydro-genase gene. Syst Appl Microbiol 28:735–745

    Article  PubMed  CAS  Google Scholar 

  • Trcek J, Teuber M (2002) Genetic restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol Lett 208:69–75

    Article  PubMed  CAS  Google Scholar 

  • Trcek J, Ramus J, Raspor P (1997) Phenotypic characterization and RAPD-PCR profiling of Acetobactersp. isolated from spirit vinegar production. Food Technol Biotechnol 35:63–67

    CAS  Google Scholar 

  • Watanabe M, Lino S (1984) Studies on bacteria isolated from Japanese wines. In: Growth of the Acetobactersp. A-1 During the Fermentation and the Storage of Grape Must and Red Wine. Part 2. Yamanashiken. Sokuhin. Koyo. Shidojo. Kenkyu. Hokoku. 16:13–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guillamón, J.M., Mas, A. (2009). Acetic Acid Bacteria. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_2

Download citation

Publish with us

Policies and ethics