Skip to main content

This chapter summarizes the signalling pathways and cellular responses the major wine yeast, Saccharomyces cerevisiae, has evolved to cope with adverse environmental conditions. These include the general stress response (GSR) resulting in trehalose accumulation, the high osmolarity glycerol (HOG) pathway producing glycerol as a compatible solute and the cell wall integrity pathway (CWI) to provide surface stability. Physical stresses such as temperature variations and pressure are largely counteracted by activation of the heat shock response (HSR). We further describe the oxidative stress response (OSR), the responses to high ethanol and sulfite concentrations and the effects of nutrient limitations. Both transcriptome and proteome data are considered. Finally, differential responses to short-term stress exposure as opposed to long-term adaptations are discussed, as are the perspectives of the increasing application of systems biology approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera F, Peinado RA, Millán C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H + −ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  PubMed  CAS  Google Scholar 

  • Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: New functions for old mechanisms. FEMS Microbiol Rev 31:327–341

    Article  PubMed  CAS  Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  PubMed  CAS  Google Scholar 

  • Ando A, Nakamura T, Murata Y, Takagi H, Shima J (2007) Identification and classification of genes required for tolerance to freezw-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7:244–253

    Article  PubMed  CAS  Google Scholar 

  • Aragon AD, Quinones GA, Thomas EV, Roy S, Werner-Washburne M (2006) Release of extraction-resistant mRNA in stationary phase Saccharomyces cerevisiae produces a massive increase in transcript abundance in response to stress. Genome Biol 7:R9

    Article  PubMed  CAS  Google Scholar 

  • Aranda A, Jimenez-Marti E, Orozco H, Matallana E, Del Olmo M (2006) Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J Agric Food Chem 54:5839–5846

    Article  PubMed  CAS  Google Scholar 

  • Attfield PV (1997) Stress tolerance: The key to effective strains of industrial baker's yeast. Nat Biotechnol 15:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Bermejo C, Rodriguez E, Garcia R, Rodriguez-Pena JM, Rodriguez de la Concepcion ML, Rivas C, Arias P, Nombela C, Posas F, Arroyo J (2008) The sequential activation of the yeast HOG and SLT2 Pathways is Required for Cell Survival to Cell Wall Stress. Mol Biol Cell 19:1113–1124.

    Article  PubMed  CAS  Google Scholar 

  • Borneman AR, Chambers PJ, Pretorius IS (2007) Yeast systems biology: Modelling the winemak-er's art. Trends Biotechnol 25:349–355

    Article  PubMed  CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SB, Anderson ES, Harshaw RB, Thate T, Craig NL, Nelson HC (2005) Protein kinase A regulates constitutive expression of small heat-shock genes in an Msn2/4p-independent and Hsf1p-dependent manner in Saccharomyces cerevisiae. Genetics 169:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cere-visiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  CAS  Google Scholar 

  • Gancedo C, Flores CL (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Covarrubias AA, Clark I, Nino I, Gosset G, Martinez A (2004) Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 63:734–741

    Article  PubMed  CAS  Google Scholar 

  • Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569

    Article  PubMed  CAS  Google Scholar 

  • Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M (2004) “Sleeping beauty”: Quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Miess A, Stromer T, Walter S, Buchner J (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280:23861–23868

    Article  PubMed  CAS  Google Scholar 

  • Hawle P, Horst D, Bebelman JP, Yang XX, Siderius M, van der Vies SM (2007) Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p). Eukaryot Cell 6:521–532

    Article  PubMed  CAS  Google Scholar 

  • Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32:671–680

    Article  PubMed  CAS  Google Scholar 

  • He XJ, Fassler JS (2005) Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol 58:1454–1467

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45

    Article  PubMed  CAS  Google Scholar 

  • Ivorra C, Perez-Ortin JE, del Olmo M (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64:698–708

    Article  PubMed  CAS  Google Scholar 

  • Izawa S, Kita T, Ikeda K, Miki T, Inoue Y (2007) Formation of cytoplasmic P-bodies in Sake yeast during Japanese Sake brewing and wine making. Biosci Biotechnol Biochem 71:2800–2807

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E, Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19–37

    Article  PubMed  CAS  Google Scholar 

  • James TC, Usher J, Campbell S, Bond U (2008) Lager yeasts possess dynamic genomes that undergo rearrangements and gene amplification in response to stress. Curr Genet 53:139–152

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet 3:e84

    Article  PubMed  CAS  Google Scholar 

  • Kapteyn JC, ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H, Klis FM (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cer-evisiae cell wall. Mol Microbiol 39:469–479

    Article  PubMed  CAS  Google Scholar 

  • Karreman RJ, Dague E, Gaboriaud F, Quiles F, Duval JF, Lindsey GG (2007) The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall.Biochim Biophys Acta 1774:131–137

    PubMed  CAS  Google Scholar 

  • Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291

    Article  PubMed  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae:Responses to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  CAS  Google Scholar 

  • Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J, Wasserman WW, Bryan J, van Vuuren HJ (2008) Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52

    Article  PubMed  CAS  Google Scholar 

  • Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6:1274–1280

    Article  PubMed  CAS  Google Scholar 

  • Novo MT, Beltran G, Torija MJ, Poblet M, Rozes N, Guillamon JM, Mas A (2003) Changes inwine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol 86:153–161

    Article  PubMed  CAS  Google Scholar 

  • Perez-Ortin JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539

    Article  PubMed  CAS  Google Scholar 

  • Perez-Torrado R, Gimeno-Alcaniz J V, Matallana E (2002) Wine yeast strains engineered for gly-cogen overproduction display enhanced viability under glucose deprivation conditions. Appl Environ Microbiol 68:3339–3344

    Article  PubMed  CAS  Google Scholar 

  • Pizarro F, Vargas FA, Agosin E (2007) A systems biology perspective of wine fermentations.Yeast 24:977–991

    Article  PubMed  CAS  Google Scholar 

  • Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 23:241–250

    Article  PubMed  CAS  Google Scholar 

  • Rodicio R, Buchwald U, Schmitz HP, Heinisch JJ (2007) Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet Biol: doi:10.1016/j.fgb.2007.07.009

    Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. Bioessays 17:959–965

    Article  PubMed  CAS  Google Scholar 

  • Shioya S, Shimizu H, Hirasawa T, Nagahisa K, Furusawa C, Pandey G, Katakura Y (2007) Metabolic pathway recruiting through genomic data analysis for industiral application of Saccharomyces cerevisiae. Biochem Eng J 36:28–37

    Article  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  PubMed  CAS  Google Scholar 

  • Straede A, Corran A, Bundy J, Heinisch JJ (2007) The effect of tea tree oil and antifungal agents on a reporter for yeast cell integrity signalling. Yeast 24:321–334

    Article  PubMed  CAS  Google Scholar 

  • Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A (2003) Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 370:35–46

    Article  PubMed  CAS  Google Scholar 

  • Treger JM, Magee TR, McEntee K (1998) Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem Biophys Res Commun 243:13–19

    Article  PubMed  CAS  Google Scholar 

  • Truman AW, Millson SH, Nuttall JM, Mollapour M, Prodromou C, Piper PW (2007) In the yeast heat shock response, Hsf1-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpk1) mitogen-activated protein kinase required for cell integrity. Eukaryot Cell 6:744–752

    Article  PubMed  CAS  Google Scholar 

  • Varela JC, van Beekvelt C, Planta RJ, Mager WH (1992) Osmostress-induced changes in yeast gene expression. Mol Microbiol 6:2183–2190

    Article  PubMed  CAS  Google Scholar 

  • Veal EA, Ross SJ, Malakasi P, Peacock E, Morgan BA (2003) Ybp1 is required for the hydrogen peroxide induced oxidation of the Yap1 transcription factor. J Biol Chem 278:30896–30904

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Renault G, Garreau H, Jacquet M (2004) Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology 150:3383–3391

    Article  PubMed  CAS  Google Scholar 

  • Zuzuarregui A, Monteoliva L, Gil C, del Olmo M (2006) Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation. Appl Environ Microbiol 72:836–847

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heinisch, J.J., Rodicio, R. (2009). Physical and Chemical Stress Factors in Yeast. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_15

Download citation

Publish with us

Policies and ethics