Skip to main content

Sulphur metabolism is important for all microorganisms as it helps them to produce sulphur amino acids needed for their growth. Yeast of the species Saccharomyces cerevisiae were mainly studied during the last two decades to gain a broad knowledge on their requirement for certain sulphur sources and to understand the effect of sulphur metabolism on their growth and fermentation activity as well as its link to nitrogen metabolism. Furthermore the interest was focused on sulphur containing intermediates and by-products that were synthesized during alcoholic fermentation of grape musts and which have a high impact on wine quality like sulphite and volatile sulphur compounds. Apart from intensive studies carried out by certain research groups to avoid the occurrence of off-flavours due to an increased production of objectionable volatile sulphur compounds from yeast metabolism, the research activities covered the contribution of yeast to the varietal aromas of certain varieties. Ongoing research is dealing with the sulphur metabolism of lactic acid bacteria during malolactic fermentation of wine and provides an insight into their contribution on the use and formation of sulphur compounds.

This chapter gives an overview on the most important steps of sulphur research related to the activity of yeast and lactic acid bacteria during winemaking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acree TE, Sonoff EP, Splittstoesser DF (1972) Effect of yeast strain and type of sulphur compounds on hydrogen sulphide production. Am J Enol Vitic 23:6–9

    Google Scholar 

  • Amoore JE, Hautala E (1983) Odor as an aid to chemical safety: Odor thresholds compared with threshold limit values and volatilities for 214 chemicals in air and water dilution. J Appl Toxicol 3:272–290

    Article  PubMed  CAS  Google Scholar 

  • Augustyn OPH, Rapp A, van Wyk CJ (1982) Some volatile aroma components of Vitis vinifera L. cv. Sauvignon blanc. S Afr Enol Vitic 3:53–59

    CAS  Google Scholar 

  • Bakalinsky AT (1996) Sulfites, wine and health. In: Wine in Context: Nutrition, Physiology, Policy, Waterhouse AL, Rantz, RM (eds) American Society for Enology and Viticulture, Davis, 1996 pp 35–42

    Google Scholar 

  • Bartowsky EJ (2005) Oenococcus oeni and malolactic fermentation — moving into the molecular arena. Aus J Grape Wine Res 11:174–187

    Article  CAS  Google Scholar 

  • Belitz H-D, Grosch W (1992) Aromastoffe. In: Lehrbuch der Lebensmittelchemie. 4. Aufl., Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, pp 304–361

    Google Scholar 

  • Bell S-J, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentaton and wine. Aus J Grape Wine Res 11:242–295

    Article  CAS  Google Scholar 

  • Bernath K (1997) Das Böckser-Aroma in Wein. Dissertation ETH Zürich, Switzerland, Nr. 12079

    Google Scholar 

  • Berry DR, Watson DC (1987) Production of organoleptic compounds. In: Yeast Biotechnology. Berry DR, Russell I, Stewart GG (eds.) Allen and Unwin, London, pp 345–368

    Google Scholar 

  • Blanchard L, Tominaga T, Dubourdieu D (2001) Formation of furfurylthiol exhibiting a strong coffee aroma during oak barrel fermentation from furfural released by toasted staves. J Agric Food Chem 49:4833–4835

    Article  PubMed  CAS  Google Scholar 

  • Bobet RA (1987) Interconversion reactions of sulfides in model solutions, Dissertation, University of California, Davis, USA

    Google Scholar 

  • Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of l-methionine catabolism pathways in cheese-ripening bacteria. Appl Environ Microbiol 66(12):5514–5517

    Article  PubMed  CAS  Google Scholar 

  • Cherest H, Davidian J-C, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulphate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    PubMed  CAS  Google Scholar 

  • Cheynier V, Trousdale E, Singleton VL, Salgues M, Wylde R (1986) Characterization of 2-S-glu-tathionyl caftaric acid and its hydrolysis in relation to grape wines. J Food Sci 34:217–221

    CAS  Google Scholar 

  • Cheynier V, Souquet JM, Moutounet M (1989) Glutathione content and glutathione to hydroxy-cinnamic acid ratio in Vitis vinifera grapes and musts. Am J Enol Vitic 40:320–324

    CAS  Google Scholar 

  • Cordente T, Heinrich A, Swiegers JH (2007) A new revolution in wine: Yeast strains that produce no detectable hydrogen sulphide. Aust Grapegrower Winemaker 526:110–114

    Google Scholar 

  • Darriet P, Lavigne V, Boidron JN, Dubourdieu D (1991) Caractérisation de l'arôme variétal des vins de Sauvignon par couplage chromatographie en phase gazeuse-odométrie. J Int Sci Vigne Vin 25:167–174

    Google Scholar 

  • Darriet P, Tominaga T, Lavigne V, Boidron JN, Dubourdieu D (1995) Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4-mercapto-4-methylpentan-2-one. Flavour Fragrance J 10:385–392

    Article  CAS  Google Scholar 

  • De Robichon-Szulmajster H, Surdin-Kerjan Y (1971) Nucleic acid and protein synthesis in yeasts: regulation of synthesis and activity. In: The Yeasts. Rose AH, Harrison JS (eds.) Vol 2, Physiology and Biochemistry of Yeasts, Academic Press, London, New York, pp 335–418

    Google Scholar 

  • Dias B, Weimer B (1998) Conversion of methionine to thiols by lactococci, lactobacilli and brevi-bacteria. Appl Environ Microbiol 64(9):3320–3326

    PubMed  CAS  Google Scholar 

  • Dittrich HH (1987) Mikrobiologie des Weines. 2. Aufl., Verlag Eugen Ulmer: Stuttgart, Germany

    Google Scholar 

  • Dittrich HH, Groβmann M (2005) Handbuch der Lebensmitteltechnologie. Mikrobiologie des Weines. 3., neu bearbeitete Auflage, Verlag Eugen Ulmer, Stuttgart, Germany

    Google Scholar 

  • Dittrich HH, Staudenmayer T (1968) SO2-Bildung, Böckserbildung und Böckserbeseitigung. Deutsche Wein-Zeitung 24:707–709

    Google Scholar 

  • Dott W, Trüper HG (1976) Sulfite formation by wine yeasts. III. Properties of sulfite reductase. Arch Microbiol 108:99–104

    Article  CAS  Google Scholar 

  • Dott W, Trüper HG (1978) Sulphite formation by wine yeast. VI. Regulation of biosynthesis of NADPH- and BV-dependent sulphite reductases. Arch Microbiol 118:249–251

    Article  CAS  Google Scholar 

  • Dott W, Heinzel M, Trüper HG (1976) Sulfite formation by wine yeasts. I. Relationships between growth, fermentation and sulfite formation. Arch Microbiol 107:289–292

    Article  CAS  Google Scholar 

  • Dott W, Heinzel M, Trüper HG (1977) Sulfite formation by wine yeasts. IV. Active uptake of sulphate by “low” and “high” sulfite producing wine yeasts. Arch Microbiol 112:283–285

    Article  CAS  Google Scholar 

  • Dubourdieu D, Lavigne-Cruège V, (2002) Role of glutathione on development of aroma defects in dry white wines. 13th International Enology Symposium, Management and Wine Marketing, Montpellier, Proceedings, Trogus H, Gafner J, Sütterlin A (eds.) International Association of Enology, Management and Wine Marketing, Breisach Germany, TS Verlag, Neuenburg a. Rhein pp 331–347

    Google Scholar 

  • Dubourdieu D, Tominaga T, Masneuf J, Peyrot des Gachons C, Murat ML (2000) The role of yeasts in grape flavor development during fermentation: The example of Sauvignon Blanc. American Society of Enology and Viticulture 50th Annual Meeting Seattle, Washington, June 19–23, 2000, pp 196–203

    Google Scholar 

  • Duncan WS, Derek JJ (1996) Glutathione is an important molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 141:207–212

    Article  Google Scholar 

  • Du Toit M, Pretorius IS (2000) Microbial spoilage and preservation of wine: Using weapons from nature's own arsenal — a review. S Afr J Enol Vitic 21(Special Issue):74–96

    CAS  Google Scholar 

  • Du Toit JW, Lisjak K, Stander M, Prevoo D (2007) Using LC-MSMS to assess glutathione levels in South African white grape juices and wines made with different levels of oxygen. J Agric Food Chem 55:2765–2769

    Article  PubMed  CAS  Google Scholar 

  • Elskens MT, Jaspers CH, Penninckx MJ (1991) Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol 137:637–644

    PubMed  CAS  Google Scholar 

  • Eschenbruch R (1972) Sulphate uptake and sulphite formation related to the methionine and/or cysteine content of grape must during the fermentation by strains of Saccharomyces cerevisiae. Vitis 11:222–227

    CAS  Google Scholar 

  • Eschenbruch R (1974) Sulphite and sulphide formation during wine making. A review. Am J Enol Vitic 25:157–161

    CAS  Google Scholar 

  • Eschenbruch R (1978) Sulphite and sulphide formation by wine yeasts. In 5th International Oenological Symposium, 13–15 February 1978, Auckland, New Zealand, Lemperle E, Frank J (eds.) Eigenverlag der Internationalen Interessengemeinschaft für moderne Kellertechnik und Betriebsführung: Breisach, pp 267–274

    Google Scholar 

  • Eschenbruch R, Bonish P, Fisher BM (1978) The production of H2S by pure culture wine yeasts. Vitis 17:67–74

    CAS  Google Scholar 

  • Fedrizzi B, Mango F, Badocco D, Nocolini G, Versini G (2007) Aging effects and grape variety dependence on the content of sulphur volatiles in wine. J Agric Food Chem 55:10880–10887

    Article  PubMed  CAS  Google Scholar 

  • Ferreira V, Ortin N, Cacho JF (2007) Optimization of a procedure for the selective isolation of some powerful aroma thiols. J Chromatogr A 1143:190–198

    Article  PubMed  CAS  Google Scholar 

  • Field JA, Thurman EM (1996) Glutathione conjugation and contaminant transformation. Environ Sci Technol 30:1413–1418

    Article  CAS  Google Scholar 

  • Fleet GH (2007) Yeasts in foods and beverages: impact on product quality and safety. Curr Opin Biotechnol 18:170–175

    Article  PubMed  CAS  Google Scholar 

  • Fleet GH, Heard GM (1993) Yeasts: Growth during fermentation. In: Wine Microbiology and Biotechnology, Chapter 2. Fleet GH (ed.) Harwood Academic Publishers, Chur, Switzerland, pp 77–164

    Google Scholar 

  • Giudici P, Kunkee RE (1994) The effect of nitrogen deficiency and sulphur-containing amino acids on the reduction of sulphate to hydrogen sulphide by wine yeasts. Am J Enol Vitic 45:107–112

    CAS  Google Scholar 

  • Guth H (1997a) Identification of character impact odorants of different white wine varieties. J Agric Food Chem 45:3022–3026

    Article  CAS  Google Scholar 

  • Guth H (1997b) Quantification and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem 45:3027–3032

    Article  CAS  Google Scholar 

  • Hallinan P, Saul DJ, Jiranek V (1999) Differential utilisation of sulphur compounds for H2S liberation by nitrogen by nitrogen-starved wine yeasts. Aus J Grape Wine Res 5:82–90

    Article  CAS  Google Scholar 

  • Hansen J, Cherest H, Kiellandbrandt MC (1994) 2 divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha-subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176:6050–6058

    PubMed  CAS  Google Scholar 

  • Henick-Kling T (1993) Malolactic fermentation. In: Wine Microbiology and Biotechnology, Chapter 10. Fleet GH (ed.), Harwood Academic Publishers, Chur, Switzerland, 289–326

    Google Scholar 

  • Henschke, PA (1996) Hydrogen sulphide production by yeast during fermentation. Proceedings Eleventh International Oenological Symposium, Sopron, Hungary, Lemperle E (ed.) International Association for Winery, Technology and Management: Breisach, Germany pp 83–102

    Google Scholar 

  • Henschke PA (1997) Wine yeast. In: Yeast sugar metabolism, Zimmermann FK, Entian K-D (eds.) Technomic Publishing: Lancaster, PA, pp 527–560

    Google Scholar 

  • Henschke PA, Jiranek V (1991) Hydrogen sulfide formation during fermentation: Effect of nitrogen composition in model grape musts. Proceedings: “International Symposium on Nitrogen in Grapes and Wine”, 18–19 June, Seattle, Am. Soc. Enol. and Vitic, Davis, CA, pp 172–184

    Google Scholar 

  • Henschke PA, Jiranek V (1993) Yeasts-Metabolism of nitrogen compounds. In: Wine Microbiology and Biotechnology, Chapter 4. Fleet GH (ed.), Harwood Academic Publishers, Chur, Switzerland, pp 77–164

    Google Scholar 

  • Hinnebush AG (1992) General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae. In: Jones EW, Pringle JR, Broach JR (ed.), The molecular and cellular biology of the yeast Saccharomyces. Gene expression. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, pp 319–414

    Google Scholar 

  • Howell KS, Klein M, Swiegers JH, Hayasaka Y, Elsey GM, Fleet GH, Høj PB, Pretorius IS, de Barres Lopes MA (2005) Genetic determinants of volatile thiol release by Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 71:5420–5426

    Article  PubMed  CAS  Google Scholar 

  • Jiranek V, Langridge P, Henschke PA (1995a) Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am J Enol Vitic 46:75–83

    CAS  Google Scholar 

  • Jiranek V, Langridge P, Henschke PA (1995b) Regulation of hydrogen sulfide liberation in wine-producing Sacccharomyces cerevisiae strains by assimilable nitrogen. J Appl Environ Microbiol 61:461–467

    CAS  Google Scholar 

  • Jones EW, Fink GR (1982) Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern JN, Jones EW, Broach JR (eds) The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, pp 181–299

    Google Scholar 

  • Kagli DM, Bonnarme P, Neuveglise C, Cogan TM, Casaregula S (2006) L-Methionine degradation pathway in Klyveromyces lactis. Identification and functional analysis of the genes encoding L-methionine aminotransferase. Appl Environ Microbiol 72:3300–3335

    Google Scholar 

  • Keck S (1989) Untersuchungen zur Bedeutung flüchtiger phenolischer, schwefelhaltiger und stickstoffhaltiger Verbindungen für unerwünschte Aromanoten des Weines mittels Gaschromatographie/Massenspektrometrie. Dissertation Universität Karlsruhe, Germany Kocková-Kratochvílová A (1990) Yeasts and yeast-like organisms. VCH Verlagsgesellschaft —Weinheim, New York, NY; Cambridge; Basel, pp 216–217

    Google Scholar 

  • Kocková-Kratochvílová A (1990) Yeasts and yeast-like organisms. VCH Verlagsgesellschaft —Weinheim, New York, NY; Cambridge; Basel, pp 216–217

    Google Scholar 

  • Landaud S, Helinck S, Bonnarme P (2008) Formation of volatile sulphur compounds and metabolism of methionine and other sulphur compounds in fermented food. Appl Microbiol Biotechnol 77:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Larsen JT, Nielsen JC, Kramp B, Richelieu M, Riisager MJ, Arneborg N, Edwards CG (2003) Impact of different strains of Saccharomyces cerevisiae on malolactic fermentation by Oenococcus oeni. Am J Enol Vitic 54:246–251

    Google Scholar 

  • Larue F, Park MK, Caruana C (1985) Quelques observations sur les conditions de la formation d'anhydride sulfureux en vinification. Connaissance Vigne Vin 19:241–248

    CAS  Google Scholar 

  • Lavigne-Cruège, V (1996) Recherches sur les composés volatils soufrés formés par la levure au cours de la vinification et de l'élevage des vins blancs secs. Thése Doctorat, Université de Bordeaux II

    Google Scholar 

  • Lavigne V, Pons A, Dubourdieu D (2007) Assay of glutathione in must and wines using capillary electrophoresis and laser-induced fluorescence detection — changes in concentration in dry white wines during alcoholic fermentation and aging. J Chromatogr A 1139:130–135

    Article  PubMed  CAS  Google Scholar 

  • Lemperle E, Lay H (1989) Zusammensetzung und Beurteilung der Weine. In: Chemie des Weines, Würdig G, Woller R (ed.), Verlag Eugen Ulmer, Stuttgart, Germany, 568–571

    Google Scholar 

  • Leppänen OA, Denslow J, Ronkainen PP (1979) A gas chromatographic method for the accurate determination of low concentrations of volatile sulfur compounds in alcoholic beverages. Inst Brew 85:350–353

    Google Scholar 

  • Leppänen OA, Denslow J, Ronkainen PP (1980) Determination of thiolacetates and some other volatile sulfur compounds in alcoholic beverages. Agric Food Chem 28:359–362

    Article  Google Scholar 

  • Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23:641–659

    Article  PubMed  CAS  Google Scholar 

  • Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF (2008) Identification of genes affecting hydrogen sulphide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 74(5):1418–1427

    Article  PubMed  CAS  Google Scholar 

  • Lopez R, Lapena AC, Cacho J, Ferreira V (2007) Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatography-pulsed flame photometric detection. J Chromatogr A 1143:8–15

    Article  PubMed  CAS  Google Scholar 

  • Marais J (1994) Sauvignon blanc cultivar aroma — A review. S Afr J Enol Vitic 15:41–45

    CAS  Google Scholar 

  • Marchand S, De Revel G, Bertrand A (2000) Approaches to wine aroma: release of aroma compounds from reactions between cysteine and carbonyl compounds in wine. J Agric Food Chem 48:4890–4895

    Article  PubMed  CAS  Google Scholar 

  • Masneuf I (1996) Recherches sur l'identification génétiques des levures de vinifications. Applications enologiques. Thèse Doctorat, Université Victor Ségalen Bordeaux II

    Google Scholar 

  • Mateau-Vivaracho L, Cacho J, Ferreira V (2008) Improved solid-phase extraction procedure for the isolation and in-sorbent pentafluorobenzyl alkylation of polyfunctional mercaptans. Optimized procedure and analytical applications. J Chromatogr A 1185:9–18

    Article  CAS  Google Scholar 

  • Matsui S, Amaha M (1981) Production of S-methyl thioacetate from methyl mercaptan by brewer's yeast. Agric Biol Chem 45:1341–1349

    CAS  Google Scholar 

  • Maujean A (2001) La chimie du soufre dans les moûts et les vins. J Int Sci Vigne Vin 35:171–194

    CAS  Google Scholar 

  • Mehdi K, Penninckx MJ (1997) An important role for glutathione and γ-glutamylpeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 143:1885–1889

    PubMed  CAS  Google Scholar 

  • Meilgaard MC (1981) Beer Flavour, Dissertation, Technical University of Denmark, Ann Arbor, Michigan, USA, University Microfilms International

    Google Scholar 

  • Mendes-Ferreira A, Mendes-Faia A, Leao C (2002) Survey of hydrogen sulphide production by wine yeasts. J Food Protection 65:1033–1037

    CAS  Google Scholar 

  • Mestres M, Busto O, Guasch J (2000) Analysis of oprganic sulphur compounds in wine aroma. J Chromatogr A 881:569–581

    Article  PubMed  CAS  Google Scholar 

  • Minarik E (1977) Métabolisme et production de composés soufrés par la levure. Bull OIV 50 559:641–648

    Google Scholar 

  • Monk PR (1986) Formation, utilisation and excretion of hydrogen sulphide by wine yeast. Australian and New Zealand Wine Industry Journal 1:10–16

    Google Scholar 

  • Moreira N, Mendes F, Pereira O, Guedes de Pinho P, Hogg T, Vasconcelos I (2002) Volatile sulphur compounds in wines related to yeast metabolism and nitrogen composition of grape musts. Anal Chim Acta 458:157–167

    Article  CAS  Google Scholar 

  • Moreira N, Mendes F, Hogg T, Vasconcelos I (2005) Alcohols, esters and heavy sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. Int J Food Microbiol 103:285–294

    Article  PubMed  CAS  Google Scholar 

  • Murat Masneuf I, Darriet P, Lavigne V, Tominaga T, Dubourdieu D (2001) Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon blanc wine. Am J Enol Vitic 52:136–139

    CAS  Google Scholar 

  • Park SK, Boulton RB, Noble AC (2000a) Formation of hydrogen sulphide and glutathione during fermentation of white grape must. Am J Enol Vitic 51(2):91–97

    CAS  Google Scholar 

  • Park SK, Boulton RB, Noble AC (2000b) Automated HPLC analysis of glutathione and other volatile thiols in grape musts and wine using pre-column derivatization with fluorescence detection. Food Chem 69:475–480

    Article  Google Scholar 

  • Penninckx MJ (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microbial Technol 26:737–742

    Article  CAS  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2:295–305

    PubMed  CAS  Google Scholar 

  • Peyrot des Gachons C, Tominaga T, Dubourdieu D (2000) Measuring the aromatic potential of Vitis vinifera L. cv. Sauvignon blanc grapes by assaying S-cysteine conjugates, precursors of the volatile thiols responsible for their varietal aroma. J Agric Food Chem 48:3387–3391

    Article  CAS  Google Scholar 

  • Peyrot des Gachons C, Tominaga T, Dubourdieu D (2002a) Localization of S-cysteine conjugates in the berry: effect of skin contact on aromatic potential of Vitis vinifera L. cv. Sauvignon Blanc must. Am J Enol Vitic 53, 144–146

    Google Scholar 

  • Peyrot des Gachons C, Tominaga T & Dubourdieu D (2002b) Sulfur aroma precursor present in S-glutathione conjugate form: identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon Blanc. J Agric Food Chem 50:4076–4079

    Article  CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  PubMed  CAS  Google Scholar 

  • Pripis-Nicolau L, De Revel G, Bertrand A, Lonvaud-Funel A (2003) Étude d'une aminotrans-férase, enzyme impliquée dans le métabolisme de la méthionine chez Oenococcus oeni. Proceedings 7th Internationl Symposium of Oenology. Bordeaux, France, Lonvaud-Funel A, De Revel G, Darriet P (coordinateurs). Editions Tec & Doc, Lavoisier, Paris, pp 348–351

    Google Scholar 

  • Pripis-Nicolau L, de Revel G, Bertrand A, Maujean A (2000) Formation of flavor compounds by the reaction of amino acids and carbonyl compounds in mild conditions. J Agric Food Chem 48:3761–3766

    Article  PubMed  CAS  Google Scholar 

  • Pripis-Nicolau L, de Revel G, Bertrand A, Lonvaud-Funel A (2004) Methionine catabolism and production of volatile sulphur compounds by Oenococcus oeni. J Appl Microbiol 96:1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Rankine BC (1963) Nature, origin and prevention of hydrogen sulphide aroma. J Sci Food Agric 14:79–91

    Article  CAS  Google Scholar 

  • Rankine BC (1968) The importance of yeasts in determining the composition and quality of wines. Vitis 7:22–49

    CAS  Google Scholar 

  • Rapp A (1989) Aromastoffe des Weines. Weinwirtschaft Technik 7:17–27

    Google Scholar 

  • Rauhut D (1993) Yeasts — production of sulphur compounds. In: Wine Microbiology and Biochemistry, Chapter 6. Fleet GH (ed.) Harwood Academic Publishers, Chur, Switzerland, pp 183–223

    Google Scholar 

  • Rauhut D (1996) Qualitätsmindernde schwefelhaltige Stoffe im Wein. -Vorkommen, Bildung, Beseitigung-, Dissertation Justus-Liebig-Universität Gieβen, Geisenheimer Berichte Band 24, Gesellschaft zur Förderung der Forschungsanstalt Geisenheim (ed)

    Google Scholar 

  • Rauhut D (2003) Impact of volatile sulfur compounds on wine quality. In: Sulfur Transport and Assimilation in Plants. Regulation, Interaction and Signaling. Davidian JC, Grill D, De Kok LJ, Stulen I, Hawkesford M, Schnug E, Rennenberg H (eds.) Backhuys Publishers, Leiden, The Netherlands, pp 121–131

    Google Scholar 

  • Rauhut D, Kürbel H (1994) Die Entstehung von H2S aus Netzschwefelrückständen während der Gärung und dessen Einfluss auf die Bildung von böckserverursachenden schwefelhaltigen Metaboliten in Wein. Vitic Enol Sci 49:27–36

    CAS  Google Scholar 

  • Rauhut D, Kürbel H, Gromann M (1995) Influences of yeast strain and assimilable nitrogen on the formation of undesirable volatile sulfur compounds during fermentation. Proceedings of the SASEV International Congress 8–10 Nov 1995, Cape Town, South Africa

    Google Scholar 

  • Rauhut D, Kürbel H, Dittrich HH, Grossmann M (1996) Properties and differences of commercial yeast strains with respect to their formation of sulfur compounds. Vitic Enol Sci 51:187–192

    CAS  Google Scholar 

  • Rauhut D, Kürbel H, Schneider K, Grossmann M (2000) Influence of nitrogen supply in the grape must on the fermentation capacity and the quality of wine. Proceedings of the XXV International Horticultural Congress (2–7 August 1998, Brussels, Benelux), Part 2, Acta Horticulturae 512, March 2000, pp 93–100

    Google Scholar 

  • Rauhut D, Shefford PG, Roll C, Kürbel H, Pour Nikfardjam M, Loos U, Löhnertz O (2001) Effect of pre- and/or post-fermentation addition of antioxidants like ascorbic acid or glutathione on fermentation, formation of volatile sulphur compounds and other substances causing off-flavours in wine, OIV, XXVI World Wine and Vine Congress (OIV), Adelaide Australia, 11–17 October 2001, pp 76–82

    Google Scholar 

  • Rauhut D, Shefford PG, Roll C, Kürbel H, Löhnertz O (2003) Effect on diverse oenological methods to avoid occurrence of atypical aging and related off-flavours in wine. 7th International Symposium of Oenology, coordinators: Lonvaud-Funel A, de Revel G, Darriet P. Editions Tec & Doc, Lavoisier, Londres, Paris, New York, 376–379

    Google Scholar 

  • Rauhut D, Gawron-Scibek M, Beisert B, Kondizior M, Schwarz R, Kürbel H, Groβmann M, Krieger, S (2004) Der Einfluss von S-haltigen Aminosäuren und Glutathion auf das Wachstum von Oenococcus oeni und die malolaktische Gärung, Weinqualität und biologischer Säureabbau: Zusammenfassung der Berichte des XVIes Entretiens Scientifiques Lallemand, pp 21–23

    Google Scholar 

  • Rauhut D, Beisert B, Berres M, Gawron-Scibek M, Kürbel H (2005) Pulse flame photometric detection: an innovative technique to analyse volatile sulfur compounds in wine and other beverages. In: State of the art in flavour chemistry and biology. Hofmann T, Rothe M, Schieberle P (eds.) Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, Germany, pp 363–368

    Google Scholar 

  • Rauhut D, Kürbel H, Fischer S, Beisert B (2007) Simultaneous analysis of N- and S-compounds as screening for the identification of off-flavours in wine. In: Recent Highlights in Flavor Chemistry & Biology. Hofmann T, Meyerhof W, Schieberle P (eds.) Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, Germany, pp 314–317

    Google Scholar 

  • Rauhut D, Schäfer V, Beisert B, Lochbühler BC, Gawron-Scibek M, Krieger-Weber S (2008) Investigations on the ability of Oenococcus oeni to produce volatile sulfphur compounds during malolactic fermentation (MLF) in wine-like media and wine. 31st World congress of vine and wine, 6th General Assembly of the OIV, June 15–20, Verona Italy, P.II.080: 326

    Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Doneche B, Lonvaud A (2000a) Handbook of Enology, Volume 1, The Microbiology of Wine and Vinifications. John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2000b) Handbook of Enology, Volume 2, The Chemistry of Wine Stabilisation and Treatments. John Wiley & Sons Ltd, Chichester, UK

    Google Scholar 

  • Romano P, Suzzi G (1993) Sulfur dioxide and wine microorganisms. In: Wine Microbiology and Biochemistry, Chapter 13. Fleet GH (ed) Harwood Academic Publishers, Chur, Switzerland, pp 373–393

    Google Scholar 

  • Romano P, Suzzi G, Domizio P, Fatichenti F (1997) Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Antonie van Leeuwenhoek 71:239–242

    Article  PubMed  CAS  Google Scholar 

  • Romano P, Fiore C, Paraggio M, Caruso M, Capece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  PubMed  CAS  Google Scholar 

  • Sarrazin E, Shinkaruk S, Tominaga T, Benneteau B, Frédot E, Dubourdieu D (2007) Odourous impact of volatile thiols on the aroma of young botrytized sweet wines: Identification an quantification of new sulfanyl alcohols. J Agric Food Chem 55:1437–1444

    Article  PubMed  CAS  Google Scholar 

  • Singelton VL (1987) Oxygen with phenols and related reactions im must, wines and model systems: observation and practical implications. Am J Enol Vitic 38, 69–77

    Google Scholar 

  • Schneider R, Charrier F, Razungles A, Baumes (2006) Evidence for an alternative biogenetic pathway leading 3-mercaptohexanol and 4-mercapto-4-methylpentan-2-one in wines. Anal Chim Acta 563:58–64

    Article  CAS  Google Scholar 

  • Schütz M, Kunkee E (1977) Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am J Enol Vitic 28:137–144

    Google Scholar 

  • Segurel MA, Razungles AJ, Riou C, Salles M, Baumes R (2004) Contributions of dimethyl sulphide to the aroma of Syrah and Grenache Noir wines and estimation of its potential in grapes of these varieties. J Agric Food Chem 52:7084–7093

    Article  PubMed  CAS  Google Scholar 

  • Sourabié AM, Spinnler H-E, Bonnarme P Saint-Eve A, Landaud S (2008) Identification of a powerful aroma compound in Munster and Camembert cheeses: ethyl 3-Mercaptopropionate. J Agric Food Chem 56:4674–4680

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen H, Lehtonen M (1979) The production of aroma compounds by yeast. J Inst Brewing 85:149–156

    CAS  Google Scholar 

  • Surdin-Kerjan Y (2003) Foreword (I): Sulfur metabolism. In: Sulfur Transport and Assimilation in Plants. Regulation, Interaction and Signaling. Davidian JC, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds.) Backhuys Publishers, Leiden, The Netherlands, pp xiii-xviii

    Google Scholar 

  • Suzzi G, Romano P, Zambonelli C (1985) Saccharomyces strain selection in minimizing SO2 requirement during vinification. Am J Enol Vitic 36:199–202

    CAS  Google Scholar 

  • Spiropoulos A, Bisson LF (2000) MET17 and hydrogen sulphide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 66:4421–4426

    Article  PubMed  CAS  Google Scholar 

  • Spiropoulos A, Tanaka J, Flerianos I, Bisson LF (2000) Characterization of hydrogen sulphide formation in commercial and natural wine isolates of Saccharomyces. Am J Enol Vitic 51:233–248

    CAS  Google Scholar 

  • Swiegers JH Cordente AG, Willmott RL, King ES, Capone DL, Francis IL, Pretorius IS (2000) Development of flavour-enhancing wine yeast. Proceedings Thirteenth Australian Wine Industry Technical Conference, Blair R, Williams P, Pretorius S (eds.), Glen Osmond SA, Australia, pp 184–188

    Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacteria modulation of wine aroma and flavour. Aus J Grape Wine Res 11:139–173

    Article  CAS  Google Scholar 

  • Swiegers JH, Capone DL, Pardon KH, Elsey GM, Sefton MA, Francis IL, Pretorius IS (2006). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast 24:561–574

    Article  CAS  Google Scholar 

  • Tanner H (1969) Der Weinböckser, Entstehung und Beseitigung. Zeitschrift für Obst- und Weinbau, 78 Jg., 105:252–258

    CAS  Google Scholar 

  • Thibon C, Shinkaruk S, Tominaga T, Bennetau B, Dubourdieu D (2008) Analysis of the diastere-oisomers of the cysteinylated aroma precursor of 3-sulfanylhexanol in Vitis vinifera grape must by gas chromatography coupled with ion trap tandem mass spectrometry. J Chromatogr A 1183:150–157

    Article  PubMed  CAS  Google Scholar 

  • Thomas CS, Gubler WD, Silacci MW, Miller R (1993a) Changes in elemental sulfur residues on Pinot noir and Cabernet Sauvignon grape berries during the growing season. Am J Enol Vitic 44:205–210

    CAS  Google Scholar 

  • Thomas CS, Boulton RB, Silacci MW, Gubler WD (1993b) The effect of elemental sulfur, yeast strain, and fermentation medium on hydrogen sulfide production during fermentation. Am J Enol Vitic 44:211–216

    CAS  Google Scholar 

  • Thomas CS, Boulton RB, Gubler WD, Silacci MW, Cole J, Miller R (1993c) The relationship between elemental sulfur residues and H2S formation during fermentation. Abstracts of the papers presented at the 44th Annual Meeting of the American Society for Enology and Viticulture in Sacramento, California, June 1993, Am J Enol Vitic 44:341

    Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulphur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61(4):503–532

    PubMed  CAS  Google Scholar 

  • Tominaga T, Dubourdieu D (2006) A novel method for quantification of 2-methyl-3-furanthiol and 2-furanmethanethiol in wines made from Vitis vinifera grape varieties. J Agric Food Chem 54:29–33

    Article  PubMed  CAS  Google Scholar 

  • Tominaga T, Masneuf I, Dubourdieu D (1995) A S-cysteine conjugate, precursor of aroma of white Sauvignon. J Int des Sciences de la Vigne et du Vin 29:227–232

    CAS  Google Scholar 

  • Tominaga T, Murat ML, Dubourdieu D (1998) Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. cv. Sauvignon blanc. J Agric Food Chem 46:1044–1048

    Article  CAS  Google Scholar 

  • Tominaga T, Blanchard L, Darriet P, Dubourdieu D (2000a) A powerful aromatic volatile thiol, 2-furanmethanethiol, exhibiting roast coffee aroma in wines made from several Vitis vinifera varieties. J Agric Food Chem 48:1799–1802

    Article  CAS  Google Scholar 

  • Tominaga T, Baltenweck Guyot R, Peyrot des Gachons C, Dubourdieu D (2000b). Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. Am J Enol Vitic 51:178–181

    CAS  Google Scholar 

  • Tominaga T, Guimberteau G, Dubourdieu D (2003) Role of certain volatile thiols in the bouquet of aged Champagne wines. J Agric Food Chem 51:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Tominaga T, Masneuf I, Dubourdieu D (2004) Powerful aromatic volatile thiols in wines made from several Vitis vinifera grape varieties and their releasing mechanism. ACS Symposium Series 871:314–337

    Article  CAS  Google Scholar 

  • Tokuyama T, Kuraishi H, Aida K, Uemura T (1973) Hydrogen sulfide evolution due to a pan-tothenic acid deficiency in the yeast requiring this vitamin, with special reference to the effect of adenosine triphosphate on yeast cysteine desulfhydrase. J Gen Appl Microbiol 19:439–466

    Article  CAS  Google Scholar 

  • Vallet A, Lucas P, Lonvaud-Funel A, de Revel G (2007) KMBA, A central metabolite of sulphur volatile compounds synthesis from methionine catabolism of Oenococcus oeni. Recent highlights in flavor chemistry & biology. Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, Germany, pp 407–411

    Google Scholar 

  • Vermeulen C, Gijs L, Collin S (2005) Sensorial contribution and formation pathways of thiols in foods: A review. Food Rev Int 21:69–137

    Article  CAS  Google Scholar 

  • Vo s PJA (1981) Assimilierbarer Stickstoff, ein Faktor, der die Weinqualität beeinfluγt. In: 6. Internationales Önologisches Symposium., 28–30 April 1981, Mainz, Lemperle E, Frank J (eds.), Eigenverlag der Internationalen Interessengemeinschaft für moderne Kellertechnik und Betriebsführung: Breisach, pp 163–180

    Google Scholar 

  • Vos PJA, Gray RS (1979) The origin and control of hydrogen sulfide during fermentation of grape must. Am J Enol Vitic 30:187–197

    CAS  Google Scholar 

  • Wainright T (1970) Hydrogen sulphide production by yeast under conditions of methionine, pan-tothenate or vitamin B6 deficiency. J Gen Microbiol 61:107–119

    Google Scholar 

  • Wakabayashi H (2004) Enzyme-catalyzed transformations of sulfur-containing flavor precursors, Dissertation, Technische Universität München

    Google Scholar 

  • Walker MD, Simpson WJ (1993) Production of volatile sulphur compounds by ale and lager brewing strains of Saccharomyces cerevisiae. Lett Appl Microbiol 16:40–43

    Article  CAS  Google Scholar 

  • Wang XD, Bohlscheid JC, Edwards CG (2003) Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J Appl Microbiol 94:349–359

    Article  PubMed  CAS  Google Scholar 

  • Wenzel K, Dittrich HH (1978) Zur Beeinflussung der Schwefelwasserstoff-Bildung der Hefe durch Trub, Stickstoffgehalt, molekularen Schwefel und Kupfer bei der Vergärung von Traubenmost. Wein-Wissenschaft 33:200–213

    Google Scholar 

  • Wenzel K, Dittrich HH, Seyffardt HP Bohnert J (1980) Schwefelrückstände auf Trauben und im Most und ihr Einfluβ auf die H2S-Bildung. Wein-Wissenschaft 35:414–420

    Google Scholar 

  • Werkhoff P, Bretschneider W, Emberger R, Güntert M, Hopp R, Köpsel M (1991) Recent developments in the sulfur flavour chemistry of yeast extracts. Chemie Mikrobiologie Technologie der Lebensmittel 13:30–57

    CAS  Google Scholar 

  • Wucherpfennig K (1984) Die schweflige Säure im Wein — önologische und toxikologische Aspekte. Deutsches Weinbau-Jahrbuch 1984, Götz B, Madel W, (eds.) Waldkircher Verlagsgesellschaft mbH, Waldkirch, Germany, pp 213–241

    Google Scholar 

  • Würdig G (1985) Levures produisant du SO2. Bulletin de l'Office International du Vin 582–589, 652–653

    Google Scholar 

  • Wüst M (2003) Zur Biochemie des sortentypischen Aromas. Wein-Qualität entscheidet sich in Nanogramm. Chemie unserer Zeit, Nr. 1, 37. Jahrgang, 8–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rauhut, D. (2009). Usage and Formation of Sulphur Compounds. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_10

Download citation

Publish with us

Policies and ethics