An Agent-Based Approach for Range Image Segmentation

  • Smaine Mazouzi
  • Zahia Guessoum
  • Fabien Michel
  • Mohamed Batouche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5043)


In this paper an agent-based segmentation approach is presented and evaluated. The approach consists in using a high number of autonomous agents for the segmentation of a range image in its different planar regions. The moving agents perform cooperative and competitive actions on the image pixels allowing a robust extraction of regions and an accurate edge detection. An artificial potential field, created around pixels of interest, allows the agents to be gathered around edges and noise regions. The results obtained with real images are compared to those of some typical methods for range image segmentation. The comparison results show the potential of the proposed approach for scene understanding in range images regarding both segmentation efficiency, and detection accuracy.


Image segmentation Multi-agent systems Range image Artificial potential field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hadiashar, A.B., Gheissari, N.: Range image segmentation using surface selection criterion. IEEE Transactions on Image Processing 15(7), 2006–2018 (2006)CrossRefGoogle Scholar
  2. 2.
    Bovenkamp, E.G.P., Dijkstra, J., Bosch, J.G., Reiber, J.H.C.: Multi-agent segmentation of IVUS images. Pattern Recognition 37(4), 647–663 (2004)CrossRefGoogle Scholar
  3. 3.
    Ding, Y., Ping, X., Hu, M., Wang, D.: Range image segmentation based on randomized hough transform. Pattern Recognition Letters 26(13), 2033–2041 (2005)CrossRefGoogle Scholar
  4. 4.
    Fan, T.J., Medioni, G.G., Nevatia, R.: Segmented description of 3-D surfaces. IEEE Journal of Robotics and Automation 3(6), 527–538 (1987)CrossRefGoogle Scholar
  5. 5.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)Google Scholar
  6. 6.
    Harrouet, F., Tisseau, J., Reignier, P., Chevaillier, P.: oRis: un environnement de simulation interactive multi-agents. Technique et Science Informatiques 21(4), 499–524 (2002)Google Scholar
  7. 7.
    Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K.W., Eggert, D.W., Fitzgibbon, A.W., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7), 673–689 (1996)CrossRefGoogle Scholar
  8. 8.
    Inokuchi, S., Nita, T., Matsuda, F., Sakurai, Y.: A three dimensional edge-region operator for range pictures. In: 6th International Conference on Pattern Recognition, Munich, pp. 918–920 (1982)Google Scholar
  9. 9.
    Jiang, X., Bowyer, K.W., Morioka, Y., Hiura, S., Sato, K., Inokuchi, S., Bock, M., Guerra, C., Loke, R.E., Hans du Buf, J.M.: Some further results of experimental comparison of range image segmentation algorithms. In: 15th International Conference on Pattern Recognition, Barcelona, Spain, vol. 4, pp. 4877–4882 (2000)Google Scholar
  10. 10.
    Jiang, X., Bunke, H.: Edge detection in range images based on Scan Line approximation. Computer Vision and Image Understanding 73(2), 183–199 (1999)CrossRefGoogle Scholar
  11. 11.
    Kang, S.B., Ikeuchi, K.: The complex EGI: A new representation for 3-D pose determination. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(7), 707–721 (1993)CrossRefGoogle Scholar
  12. 12.
    Krishnamurthy, E.V., Murthy, V.K.: Distributed agent paradigm for soft and hard computation. Journal of Network and Computer Applications 29(2), 124–146 (2006)CrossRefGoogle Scholar
  13. 13.
    Li, S., Zhao, D.: Gradient-based polyhedral segmentation for range images. Pattern Recognition Letters 24(12), 2069–2077 (2003)CrossRefGoogle Scholar
  14. 14.
    Li, S.Z.: Roof-edge preserving image smoothing based on MRFs. IEEE Transactions on Image Processing 9(6), 1134–1138 (2000)CrossRefGoogle Scholar
  15. 15.
    Li, S.Z.: Markov random field modeling in image analysis. Springer, New York, Inc., Secaucus, NJ, USA (2001)zbMATHGoogle Scholar
  16. 16.
    Liu, J., Tang, Y.Y.: Adaptive image segmentation with distributed behavior-based agents. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(6), 544–551 (1999)CrossRefGoogle Scholar
  17. 17.
    Newell, A.: Unified theories of cognition. Harvard University Press, Cambridge, MA, USA (1990)Google Scholar
  18. 18.
    Richard, N., Dojat, M., Garbay, C.: Automated segmentation of human brain MR images using a multi-agent approach. Artificial Intelligence in Medicine 30(2), 153–176 (2004)CrossRefGoogle Scholar
  19. 19.
    Rodin, V., Benzinou, A., Guillaud, A., Ballet, P., Harrouet, F., Tisseau, J., Le Bihan, J.: An immune oriented multi-agent system for biological image processing. Pattern Recognition 37(4), 631–645 (2004)CrossRefGoogle Scholar
  20. 20.
    Simonin, O.: Construction of numerical potential fields with reactive agents. In: AAMAS 2005: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 1351–1352. ACM Press, New York (2005)CrossRefGoogle Scholar
  21. 21.
    Tsuji, T., Tanaka, Y., Morasso, P., Sanguineti, V., Kaneko, M.: Bio-mimetic trajectory generation of robots via artificial potential field with time base generator. IEEE Transactions on Systems, Man, and Cybernetics, Part C 32(4), 426–439 (2002)CrossRefGoogle Scholar
  22. 22.
    Yang, H.S., Kak, A.C.: Determination of the identity, position and orientation of the topmost object in a pile. Computer Vision, Graphics, and Image Processing 36(2-3), 229–255 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Smaine Mazouzi
    • 1
  • Zahia Guessoum
    • 2
  • Fabien Michel
    • 1
  • Mohamed Batouche
    • 3
  1. 1.MODECO-CReSTICUniversité de ReimsReimsFrance
  2. 2.LIP6Université de Paris 6ParisFrance
  3. 3.Département d’informatiqueUniversité de ConstantineAlgérie

Personalised recommendations