Skip to main content

Nonequilibrium Quantum Breakdown in a Strongly Correlated Electron System

  • Chapter
  • First Online:
Quantum and Semi-classical Percolation and Breakdown in Disordered Solids

Part of the book series: Lecture Notes in Physics ((LNP,volume 762))

Abstract

During the past decades, there has been an increasing fascination and surprises with diverse quantum many-body effects. With the magical touch of interaction a simple electron system may assume insulating, metallic, magnetic or superconducting states according as the control parameters are changed. Strongly correlated electron systems, as exemplified by the high-Tc superconductors and their host materials realized in transition-metal oxides, as well as by organic metals, have provided us with an ideal playground, where various crystal structures with band-filling control and band-width control etc., provide the richness in the phase diagram [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  ADS  Google Scholar 

  2. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature, 388, 50 (1997).

    Article  ADS  Google Scholar 

  3. A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, and C.W. Chu , Appl. Phys. Lett. 83, 957 (2003).

    Article  ADS  Google Scholar 

  4. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett., 85, 4073 (2004).

    Article  ADS  Google Scholar 

  5. H. Oshima, K. Miyano, Y. Konishi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 75, 1473 (1999).

    Article  ADS  Google Scholar 

  6. S.Q. Liu, N.J. Wu, and A. Ignatiev, Appl. Phys. Lett. 76, 2749 (2000).

    Article  ADS  Google Scholar 

  7. V. Ponnambalam, S. Parashar, A.R. Raju, and C.N.R. Rao, Appl. Phys. Lett. 74, 206 (1999).

    Article  ADS  Google Scholar 

  8. K. Inagaki, I. Terasaki, H. Mori, T. Mori, J. Phys. Soc. Jpn 73, 3364 (2004).

    Article  ADS  Google Scholar 

  9. A. Ohtomo and H.Y. Hwang, Nature, 427, 423 (2004).

    Article  ADS  Google Scholar 

  10. T. Oka N. Konno R. Arita, and H. Aoki, Phys. Rev. Lett. 94, 100602 (2005).

    Article  ADS  Google Scholar 

  11. T. Oka R. Arita, and H. Aoki, Physica B. 759, 359–361 (2005).

    Google Scholar 

  12. T. Oka and H. Aoki, Phys. Rev. Lett. 95, 137601 (2005).

    Article  ADS  Google Scholar 

  13. T. Oka R. Arita, and H. Aoki Phys. Rev. Lett. 91, 66406 (2003).

    Article  ADS  Google Scholar 

  14. T. Oka and N. Nagaosa, Phys. Rev. Lett. 95, 266403 (2005).

    Article  ADS  Google Scholar 

  15. C. Zener, Proc. R. Soc. London. er. A, 137, 696 (1932).

    Google Scholar 

  16. Y. Taguchi, T. Matsumoto, and Y. Tokura, Phys. Rev. B 62, 7015 (2000).

    Article  ADS  Google Scholar 

  17. W. Heisenberg and H. Euler, Z. Physik 98, 714 (1936).

    Article  ADS  Google Scholar 

  18. J. Schwinger, Phys. Rev. 82, 664 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. S.R. White and A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).

    Article  ADS  Google Scholar 

  20. R. Resta, Phys. Rev. Lett. 80, 1800 (1998).

    Article  ADS  Google Scholar 

  21. J.E. Avron and J.Nemirovsky, Phys. Rev. Lett. 68, 2212 (1992).

    Article  ADS  Google Scholar 

  22. C.G. Callan Jr. and S. Coleman, Phys. Rev. D 16, 1762 (1977).

    Article  ADS  Google Scholar 

  23. C. Zener, Proc. Roy. Soc. London 145, 523 (1934).

    Google Scholar 

  24. L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932).

    MATH  Google Scholar 

  25. W. Dittrich and H. Gies, Probing the Quantum Vacuum (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  26. R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, R1651 (1993).

    Article  ADS  Google Scholar 

  27. M. Nakamura and J. Voit, Phys. Rev. B 65, 153110 (2002).

    Article  ADS  Google Scholar 

  28. R. Resta, Ferroelectrics 136, 51 (1992).

    Article  Google Scholar 

  29. R. Resta and S. Sorella, Phys. Rev. Lett. 82, 370 (1999).

    Article  ADS  Google Scholar 

  30. T. Fukui and N. Kawakami, Phys. Rev. B 58, 1651 (1998).

    Article  Google Scholar 

  31. Y. Nakamura and N. Hatano, J. Phys. Soc. Jpn. 75, 104001 (2006).

    Article  ADS  Google Scholar 

  32. Y. Kayanuma, Phys. Rev. B, 47, 9940 (1993).

    Article  ADS  Google Scholar 

  33. M.V. Berry, Proc.R.Soc.Lond. A 392, 45 (1984).

    Google Scholar 

  34. Y. Kayanuma, Phys. Rev. A 55, R2495 (1997).

    Article  ADS  Google Scholar 

  35. C. Itzykson and J-B. Zuber, Quantum Field Theory (McGraw-Hill, Inc., 1980).

    Google Scholar 

  36. F. Woynarovich, J. Phys. C, 15, 85 (1982).

    Article  ADS  Google Scholar 

  37. F. Woynarovich, J. Phys. C, 15, 97 (1982).

    Article  ADS  Google Scholar 

  38. R. Arita, K. Kusakabe, K. Kuroki, and H. Aoki, J. Phys. Soc. Jpn. 66, 2086 (1997).

    Article  ADS  Google Scholar 

  39. K. Kusakabe and H. Aoki, J. Phys. Soc. Jpn. 65, 2772 (1996).

    Article  ADS  Google Scholar 

  40. B. Sutherland, Phys. Rev. Lett. 74, 816 (1995).

    Article  ADS  Google Scholar 

  41. W. Kohn, Phys. Rev. A 133, 171 (1963).

    Google Scholar 

  42. E.C.G. Stuckelberg, Helv. Phys. Acta 5, 369 (1932).

    Google Scholar 

  43. M.A. Cazalilla and J.B. Marston, Phys. Rev. Lett. 88, 256403 (2002).

    Article  ADS  Google Scholar 

  44. M. Wilkinson and M. A. Morgan, Phys. Rev. A 61, 062104 (2000).

    Article  ADS  Google Scholar 

  45. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).

    Article  ADS  Google Scholar 

  46. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).

    Article  ADS  Google Scholar 

  47. A.J. Daley, C. Kollath, U. Schollwoeck, and G.Vidal, J. Stat. Mech.: Theor. Exp. P04005 (2004).

    Google Scholar 

  48. E.H. Lieb, and F.Y. Wu, Phys. Rev. Lett 21, 192 (1968).

    Article  ADS  Google Scholar 

  49. H. Nakamura, J. Chem. Phys. 87, 4031 (1987).

    Article  ADS  Google Scholar 

  50. G. Blatter and D.A. Browne, Phys.Rev.B 37, 3856 (1988).

    Article  ADS  Google Scholar 

  51. J.T. Chalker and P.D. Coddington, J. Phys. C 21, 2665 (1988).

    Article  ADS  Google Scholar 

  52. A. Wöjcik T. Luczak P. Kurzynski A. Grudka and M. Bednarska, Phys. Rev. Lett. 93, 180601 (2004).

    Article  Google Scholar 

  53. D. Bouwmeester, I. Marzoli, G. P. Karman, W. Schleich, and J. P. Woerdman, Phys. Rev. A 61, 013410 (2000).

    Article  ADS  Google Scholar 

  54. A. Ambainis, Int. J. Quantum Information 1, 507 (2003).

    Article  MATH  Google Scholar 

  55. E. Bach, S. Coppersmith, M.P. Goldschen, R. Joynt, and J. Watrous, JF. C S S. 69, 562 (2004).

    Google Scholar 

  56. J. Kempe, Contemporary Physics 44, 307 (2003).

    Article  ADS  Google Scholar 

  57. T. Yamasaki H. Kobayashi, and H. Imai, Phys. Rev.A 65, 032310 (2003).

    Google Scholar 

  58. N. Konno, Quantum Information and Computation 2, 578 (2002).

    MATH  MathSciNet  Google Scholar 

  59. N. Konno, Quantum Information Processing 1, 345 (2002).

    Article  MathSciNet  Google Scholar 

  60. N. Konno, J. Math. Soc. Jpn. 57, 1179 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  61. B. Tregenna, W. Flanagan, W. Maile, and V. Kendon, New J. Phys. 5, 83.1 (2003).

    Article  Google Scholar 

  62. T. Namiki, N. Konno, and T. Soshi, Interdisciplinary Information Sci., 10, 11 (2004).

    Google Scholar 

  63. A. Nayak and A. Vishwanath, quant-ph/0010117 (2000).

    Google Scholar 

  64. N. Konno, T. Namiki, T. Soshi, and A. Sudbury, J. Phys. A: Math. Gen. 36, 241 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. T.D. Mackay, S.D. Bartlett, L.T. Stephanson, and B.C. Sanders, J. Phys. A: Math. Gen. 35, 2745 (2002).

    Article  MATH  ADS  Google Scholar 

  66. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

    Google Scholar 

  67. D. Aharonov, A. Ambainis, J. Kempe, and U.V. Vazirani, Proceedings of the 33rd Annual ACM Symposium on Thoery of Computing 50 (2001).

    Google Scholar 

  68. N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A, 052323 (2004).

    Google Scholar 

  69. N. Inui and N. Konno, Physica A 353, 133 (2005).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Oka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oka, T., Aoki, H. (2009). Nonequilibrium Quantum Breakdown in a Strongly Correlated Electron System. In: Chakrabarti, B., Bardhan, K., Sen, A. (eds) Quantum and Semi-classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol 762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85428-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85428-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85427-2

  • Online ISBN: 978-3-540-85428-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics