Skip to main content

Non-linear Response, Semi-Classical Percolation and Breakdown in the RRTN Model

  • Chapter
  • First Online:
Book cover Quantum and Semi-classical Percolation and Breakdown in Disordered Solids

Part of the book series: Lecture Notes in Physics ((LNP,volume 762))

Abstract

In this chapter, we address the issue of non-linearity of response functions of disordered, granular composite materials and more specifically, an extension of the classical percolation (a classical insulator to metal phase transition; concisely reviewed by the author of the first chapter) problem to a situation where the contributions of nonclassical or non-diffusive processes cannot be neglected. In the paradigm of charge transport in electrical composites, this implies that the charge carriers travel not only inside metallic phases or grains but also outside of it; for example, in the microscopic gap between two such grains using some externally assisted hopping over the barrier potential due to the gap. The assistance may be due to the phonons (ambient thermal bath), impressed electrical and/or chemical potential differences, etc. As such, these processes are known to bring forth non-linearity in the response functions of the macroscopic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Wolf, D.U. Gubser, and Y. Imry, Phys. Rev. Lett. 42, 324 (1979)

    Article  ADS  Google Scholar 

  2. D.S. Fisher, Phys. Rev. Lett. 68, 670 (1983)

    Google Scholar 

  3. M. Kardar. In: Dynamics of Fluctuating Interfaces and Related Phenomena, ed by D. Kim, H. Park, and B. Kahng, p. 30 (World Scientific, Singapore, 1997)

    Google Scholar 

  4. Y. Gefen, W.-H. Shih, R.B. Laibowitz, and J.M. Viggiano, Phys. Rev. Lett. 57, 3097 (1986)

    Article  ADS  Google Scholar 

  5. R.M. Bradley, D. Kung, P.N. Strenski, and S. Doniach, Physica B 152, 282–287 (1988)

    Article  ADS  Google Scholar 

  6. R. Heemskerk and T.M. Klapwijk, Phys. Rev. B 58, R1754–R1757 (1998)

    Article  ADS  Google Scholar 

  7. Z. Yao, H.W. Ch. Postma, L. Balents, and C. Dekker, Nature 402, 273–276 (1999)

    Article  ADS  Google Scholar 

  8. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635–638 (2000)

    Article  ADS  Google Scholar 

  9. M. Sahimi and J.D. Goddard, Phys. Rev. B 32, 1869–1871 (1985)

    Article  ADS  Google Scholar 

  10. L. Benguigui and P. Ron, Phys. Rev. Lett. 70, 2423–2426 (1993)

    Article  ADS  Google Scholar 

  11. M. Sahimi. In. Annual Reviews of Computational Physics II, ed by D. Stauffer, p. 175 (World Scientific, Singapore, 1995)

    Google Scholar 

  12. L. de Arcangelis, S. Redner and H.J. Herrmann, J. Physique Lett. 46, L585–L590 (1985)

    Article  Google Scholar 

  13. L.K.H. van Beek and B.I.C.F. van Pul, Carbon 2, 121 (1964)

    Article  Google Scholar 

  14. G.E. Pike and C.H. Seager, J. Appl. Phys. 48, 5152 (1977)

    Article  ADS  Google Scholar 

  15. E.K. Sichel, J.I. Gittelman, and P. Sheng, Phys. Rev. B 18, 5712 (1978)

    Article  ADS  Google Scholar 

  16. M. Prester, E. Babić, M. Stubičar, and P. Nozar, Phys. Rev. B 49, 6967 (1994)

    Article  ADS  Google Scholar 

  17. G.D. Mahan, Lionel M. Levinson, and H.R. Philipp, J. Appl. Phys. 50, 2799 (1979)

    Article  ADS  Google Scholar 

  18. I. Balberg, Phys. Rev. Lett. 59, 1305 (1987)

    Article  ADS  Google Scholar 

  19. J. Robertson, Adv. Phys. 35, 318–374 (1986) for filamented structure of a-C

    Article  ADS  Google Scholar 

  20. M. Reghu, C.O. Yoon, C.Y. Yang, D. Moses, P. Smith, and A.J. Heeger, Phys. Rev. B 50, 13931 (1994)

    Article  ADS  Google Scholar 

  21. K.K. Bardhan and R.K. Chakrabarty, Phys. Rev. Lett. 69, 2559 (1992)

    Article  ADS  Google Scholar 

  22. D. van der Putten, J.T. Moonen, H.B. Brom, J.C.M. Brokken-Zijp, and M.A.J. Michels, Phys. Rev. Lett. 69, 494 (1992)

    Article  ADS  Google Scholar 

  23. P. Mandal, A. Neumann, A.G.M. Jansen, P. Wyder, and R. Deltour, Phys. Rev. B, 55, 452 (1997)

    Article  ADS  Google Scholar 

  24. I-G. Chen and W.B. Johnson, J. Mat. Sc. 27, 5497 (1992)

    Article  ADS  Google Scholar 

  25. A.J. Rimberg, T.R. Ho, and J. Clarke, Phys. Rev. Lett. 74, 4714 (1995)

    Google Scholar 

  26. M. Aertsens and J. Naudts. In: Phase Transitions in Soft Condensed Matter, ed by T. Riste and D. Sherrington, NATO ASI Series B: Physics, 211 (Plenum, New York, 1990)

    Google Scholar 

  27. R.K. Chakrabarty, K.K. Bardhan, and A. Basu, J. Phys.: Condens. Matt. 5, 2377 (1993)

    Article  ADS  Google Scholar 

  28. J.P. Clerc, G. Giraud, J.M. Laugier, and J.M. Luck. In: The Electrical Conductivity of Binary Disordered Systems, Percolation Clusters, Fractals and Related Models, Adv. Phys. 39, 191–309 (1990)

    Article  ADS  Google Scholar 

  29. J. Hammersley. In: Percolation Structures and Processes, ed by G. Deutscher, R. Zallen, and J. Adler, Annals of the Israel Physical Society, 5 (1983)

    Google Scholar 

  30. D.J. Bergman and D. Stroud. In: Solid State Physics: Advances in Research and Applications, ed by H. Ehrenreich and D. Turnbull, pp. 148–269 (Academic Press, New York, 1992)

    Google Scholar 

  31. ETOPIM 4. In: Proceedings of the Fourth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media, ed by A.M. Dykhne, A.N. Lagar’kov, and A.K. Sarychev, Physica A 241, 1–452 (1997)

    Google Scholar 

  32. , ed by H. Fritzsche and M. Pollak (World Scientific, Singapore, 1990)

    Google Scholar 

  33. , ed by M. Pollak and B. Shklovskii (Elsevier, North Holland, 1991)

    Google Scholar 

  34. , Marburg 1991, ed by H. Bottger, Phil. Mag. B 65, 593–894 (1992)

    Google Scholar 

  35. J.C. Dyre and T.B. Schroder,Mod. Phys. 72, 873–892 (2000)

    Article  ADS  Google Scholar 

  36. V.M. Shalaev, Phys. Rep. 272, 61 (1996)

    Article  ADS  Google Scholar 

  37. A. Ghosh and M. Sural, Europhys. Lett. 47, 688–693 (1999)

    Article  ADS  Google Scholar 

  38. A. Dutta, T.P. Sinha, and S. Shannigrahi. Dielectric relaxation and electronic structure of CaFeSbO3. Phys. Rev. B 76, 155113 (2007)

    Article  ADS  Google Scholar 

  39. A. Dutta, C. Bharti, and T.P. Sinha. AC conductivity and dielectric relaxation in CaMgNbO3. Mater. Res. Bull. doi:10.1016/j.materresbull.2007.05.023, (2007)

    Google Scholar 

  40. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  41. V. Ambegaokar, B.L. Halperin, and J.S. Langer, Phys. Rev. B 4, 2612 (1971)

    Article  ADS  Google Scholar 

  42. L. Benguigui and P. Ron. In: Non-linearity and Breakdown in Soft Condensed Matter, ed by K.K. Bardhan, B.K. Chakrabarti, and Alex Hansen, Lecture Notes in Physics, 437, 221–234 (Springer, Berlin, 1994)

    Google Scholar 

  43. A.K. Sen and A. Kar Gupta. In: Non-linearity and Breakdown in Soft Condensed Matter, ed by K.K. Bardhan, B.K. Chakrabarti, and A. Hansen, Lecture Notes in Physics, 437, 271–287 (Springer, Berlin, 1994)

    Google Scholar 

  44. D.A.G. Bruggeman, Ann. Phys. (Leipz.) 24, 636 (1935)

    Article  ADS  Google Scholar 

  45. R. Landauer, J. Appl. Phys. 23, 779 (1952)

    Article  ADS  Google Scholar 

  46. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)

    Article  ADS  Google Scholar 

  47. P.M. Hui. In: Non-linearity and Breakdown in Soft Condensed Matter, ed by K.K. Bardhan, B.K. Chakrabarti, and A. Hansen, Lecture Notes in Physics, 437, 261–270 (Springer, Berlin, 1994)

    Google Scholar 

  48. A. Kar Gupta and A.K. Sen, Physica A 215, 1–9 (1995)

    Article  ADS  Google Scholar 

  49. H.E. Stanley, P.J. Reynolds, S. Redner, and F. Family. In: Real-Space Renormalization, ed by T.W. Burkhardt and J.M.J. van Leeuwen, pp. 169–206 (Springer, Berlin, 1982)

    Google Scholar 

  50. D. Stauffer and A. Aharony. Introduction to Percolation Theory, 2nd revised ed. (Taylor and Francis, London, 1994)

    Google Scholar 

  51. S. Roux and H.J. Herrmann, Europhys. Lett. 4, 1227 (1987)

    Article  ADS  Google Scholar 

  52. D. Lenstra and R.T.M. Smokers, Phys. Rev. B 38, 6452 (1988)

    Article  ADS  Google Scholar 

  53. A. Kar Gupta and A.K. Sen, Physica A 247, 30–40 (1997)

    Article  ADS  Google Scholar 

  54. A.K. Sen, Phys. Rev. Lett. 74, 1693 (1995)

    Article  ADS  Google Scholar 

  55. A.K. Sen and A. Kar Gupta, Phys Rev B 59, 9167–9173 (1999)

    Article  ADS  Google Scholar 

  56. M. Pollak. In Proc. Int. Conf. Semiconductor Physics, p. 86 (Exeter, 1962)

    Google Scholar 

  57. A. Kar Gupta and A.K. Sen, Phys Rev B 57, 3375–3388 (1998)

    Article  ADS  Google Scholar 

  58. A.R. Long. In: Hopping Transport in Solids, ed by M. Pollak and B. Shklovskii, pp. 207–231 (Elsevier, North Holland, 1991)

    Google Scholar 

  59. S. Summerfield and P.N. Butcher, J. Phys. C 15, 7003 (1982)

    Article  ADS  Google Scholar 

  60. A.K. Sen and S. Bhattacharya. In: Continuum Models and Discrete Systems, NATO Sci. Ser. II. Math. Phys. Chem., ed by D. Bergman and E. Inan, 158, 367–373 (Kluwer Acad. Publ., Dordrecht, 2004); A preliminary study of the VRH in the RRTN was published by: A. Kar Gupta, D. Dan and A.K. Sen. Ind. J. Phys. A 71, 357 (1997)

    Google Scholar 

  61. A.L. Efros and B.I. Shklovskii, J. Phys. C 8, 249 (1975)

    Article  Google Scholar 

  62. A. Aharony, A.B. Harris, and O. Entin-Wohlman, Phys. Rev. Lett. 70, 4160 (1993)

    Article  ADS  Google Scholar 

  63. G. Deutscher, Y.-E. Lévy, and B. Souillard, Europhys. Lett. 4, 577 (1987)

    Article  ADS  Google Scholar 

  64. K. Ogasawara, T. Ishiguro, S. Horiuchi, H. Yamochi, G. Saito, and Y. Nogami, J. Phys. Chem. Solids 58, 39 (1997)

    Article  ADS  Google Scholar 

  65. Y. Meir, Phys. Rev. B 61, 16470 (2000)

    Article  ADS  Google Scholar 

  66. P. Debye. Z. Phys. 13, 97 (1912)

    Google Scholar 

  67. J.M. Ziman. Principles of the Theory of Solids, 2nd. ed., p. 213 (Cambridge Univ. Press, London, 1972)

    Google Scholar 

  68. H. Scher, M.F. Shlesinger, and J.T. Bendler. Physics Today 44 (1), 26 (1991)

    Article  ADS  Google Scholar 

  69. H. Scher and E.W. Montroll, Phys. Rev. B 12, 2455 (1975)

    Article  ADS  Google Scholar 

  70. T. Tiedje. In: Semiconductors and Semimetals 21C, ed by J. Pankove p. 207 (Academic, New York 1984

    Google Scholar 

  71. G. Pfister, Phys. Rev. Lett. 33, 1474 (1974)

    Article  ADS  Google Scholar 

  72. F.C. Bos and D.M. Burland, Phys. Rev. Lett. 58, 152 (1987)

    Article  ADS  Google Scholar 

  73. H.E. Boesch Jr. et al., IEEE Trans. Nucl. Sci. 25, 1239 (1978)

    Article  ADS  Google Scholar 

  74. W. Feller. An Introduction to Probability Theory and its Applications, 2nd ed., p. 258 (John Wiley and Sons, London, 2000)

    Google Scholar 

  75. R.M. Hill, J. Mater. Sci. 17, 3630 (1982)

    Google Scholar 

  76. K. Weron and A. Jurlewicz, J. Phys. A 26, 395 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  77. M. Kuno, D.P. Fromm, H.F. Hamann, A. Gallagher, and D.J. Nesbitt. J. Chem. Phys 112, 3117 (2000)

    Article  ADS  Google Scholar 

  78. F. Parak and H. Frauenfelder, Physica A 201, 332 (1993)

    Article  ADS  Google Scholar 

  79. R.H. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, I.C. Gunsalus, and V.P. Marshall, Phys. Rev. Lett. 32, 403 (1974)

    Article  ADS  Google Scholar 

  80. C. Tsallis, G. Bemski, and R.S. Mendes. Phys. Lett. A 257, 93 (1999)

    Article  ADS  Google Scholar 

  81. J. Naudts, Rev. Math. Phys. 12, 1305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  82. J. Naudts and M. Czachor. arXiv:cond-mat/0108354 (2001)

    Google Scholar 

  83. I. Bezprozvanny, J. Watras, and B.E. Ehrlich. Nature (London) 351, 751 (1991)

    Article  ADS  Google Scholar 

  84. M. Bar, M. Falcke, H. Levine, and L.S. Tsimring, Phys. Rev. Lett 84, 5664 (2000)

    Article  ADS  Google Scholar 

  85. , ed. by A.S. Edelstein and R.C. Cammarata, 1st. paperback ed. (Inst. of Phys. Publ., Bristol, 1998)

    Google Scholar 

  86. B.B. Mandelbrot, B. Kol, and A. Aharony, Phys. Rev. Lett. 88, 055501 (2002)

    Article  ADS  Google Scholar 

  87. S. Banerjee and S. Kundu, Surf. Science 537, 153 (2001)

    Article  Google Scholar 

  88. F. Omori, J. Coll. Sci. Imp. Univ. Tokyo 7, 111 (1894)

    Google Scholar 

  89. M. Shnirman and E. Blanter. In: Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, ed by V.I. Kellis-Borok and A.A. Soloviev, p. 67 (Springer Series in Synergetics, Berlin-Heidelberg, 2003)

    Google Scholar 

  90. H. Nakanishi, Phys. Rev. A 43, 6613 (1991)

    Article  ADS  Google Scholar 

  91. S. Bhattacharya, P.P. Roy, and A.K. Sen. In: Proceedings of an Internationl Conference on Applied Mathematics and Mathematical Physics, 2002, ed by M.A. Hossain and G.D. Roy p. 205 (SUST, Sylhet, Bangladesh 2004) it also appears as: arXiv cond-mat/0310374 (2003)

    Google Scholar 

  92. C. Tsallis, M. Gell-Mann, and Y. Sato. arXiv cond-mat/0502274 (2005)

    Google Scholar 

  93. C. Beck, Phys. Rev. Lett. 87, 180601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  94. A.K. Sen and S. Mozumdar. In: Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach, ed by P. Bhattacharya and B.K. Chakrabarti, Lecture Notes in Physics 705, 507–513 (Springer, Berlin, 2006); for a more detailed and revised version see A.K. Sen and S. Mozumdar. In: Proc. International Symposium on Continuum Models and Discrete Systems (CMDS11), Paris, 30 July–3 August, 2007, ed by D. Jeulin and S. Forest, pp. 251–256 (Ecoles des mines de Paris, 2008)

    Google Scholar 

  95. For example, see the articles in Statistical Models for the Fracture of Disordered Media, ed by H.J. Herrmann and S. Roux (North-Holland, Amsterdam 1990); for a more recent and pedagogical review one may consult an advanced text-book: Heterogeneous Materials II: Nonlinear and Breakdown Properties and Atomistic Modeling, M. Sahimi (Springer, New York 2003)

    Google Scholar 

  96. D. Stauffer, Physica A 242, 1 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  97. D.R. Bowman and D. Stroud, Bull. Am. Phys. Soc. 30, 563 (1985)

    Google Scholar 

  98. D.R. Bowman and D. Stroud, Phys. Rev. B 40, 4641 (1989)

    Article  ADS  Google Scholar 

  99. P.M. Duxbury, P.D. Beale, and P.L. Leath, Phys. Rev. Lett. 57, 1052 (1986)

    Article  ADS  Google Scholar 

  100. P. Ray and B.K. Chakrabarti, J. Phys. C 18, L185 (1985)

    Article  ADS  Google Scholar 

  101. P. Ray and B.K. Chakra barti, Solid State Commn. 53, 477 (1985)

    Article  ADS  Google Scholar 

  102. S.S. Manna and B.K. Chakrabarti, Phys. Rev. B 36, 4078 (1987)

    Article  ADS  Google Scholar 

  103. P.D. Beale, and P.M. Duxbury, Phys. Rev. B, 37, 2785 (1988)

    Article  ADS  Google Scholar 

  104. R.B. Stinchcombe, P.M. Duxbury, and P. Shukla, J. Phys. A 19, 3903 (1986)

    Article  ADS  Google Scholar 

  105. B.K. Chakrabarti, K.K. Bardhan, and P. Ray, J. Phys. C 20, L57 (1987)

    Article  ADS  Google Scholar 

  106. J.T. Chayes, L. Chayes, and R. Durret, J. Stat. Phys. 45, 933 (1986)

    Article  MATH  ADS  Google Scholar 

  107. A. Kar Gupta and A.K. Sen, J. Stat. Phys. 80, 1425 (1995)

    Article  MATH  ADS  Google Scholar 

  108. S. Bhattacharya and A.K. Sen. Europhys. Lett. 71, 797–803 (2005)

    Article  ADS  Google Scholar 

  109. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, and R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  ADS  Google Scholar 

  110. K.B. Efetov and A. Tschersich. arXiv: cond-matt/0109033 (2001)

    Google Scholar 

  111. B. Kahng, G.G. Batrouni, S.Redner, L. deArcangelis, and H.J. Herrmann. Phys. Rev. B 37, 7625–7637 (1988)

    Article  ADS  Google Scholar 

  112. E.L. Hinrichsen, S.Roux, and A. Hansen, Physica C 167, 433–455 (1990)

    Article  ADS  Google Scholar 

  113. U.N. Nandy and K.K. Bardhan, Europhys. Lett. 31, 101 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sen, A. (2009). Non-linear Response, Semi-Classical Percolation and Breakdown in the RRTN Model. In: Chakrabarti, B., Bardhan, K., Sen, A. (eds) Quantum and Semi-classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol 762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85428-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85428-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85427-2

  • Online ISBN: 978-3-540-85428-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics