Skip to main content

A Problem-Orientable Numerical Algorithm for Modeling Multi-Dimensional Radiative MHD Flows in Astrophysics – the Hierarchical Solution Scenario

  • Conference paper
Numerical Methods in Multidimensional Radiative Transfer
  • 1090 Accesses

Summary

We present a hierarchical algorithm for the adaptation of numerical solvers in high energy astrophysics.

This approach is based on clustering the entries of the global Jacobian in a hierarchical manner that enables employing a variety of solution procedures ranging from a purely explicit time-stepping up to fully implicit schemes.

A gradual coupling of the radiative MHD equation with the radiative transfer equation in higher dimensions is possible.

Using this approach, it is possible to follow the evolution of strongly time-dependent flows with low/high accuracies and with efficiency comparable to explicit methods, as well as searching quasi-stationary solutions for highly viscous flows.

In particular, it is shown that the hierarchical approach is capable of modeling the formation of jets in active galactic nuclei and reproduce the corresponding spectral energy distribution with a reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbus, S., Hawley, J., 1991, ApJ, 376

    Google Scholar 

  2. Beam, R.M., Warming, R.F., 1978, AIAA, 16, 393

    Article  MATH  Google Scholar 

  3. Brandt, A., 2001, in “Multigrid”, ed.: Trottenberg, U., Oosterlee, C., Schüller, A., Acad. Press, London

    Google Scholar 

  4. Dongarra, J., Duff, I., Sorensen, D., van der Vorst, H.A., 1998, “Num. Linear Alg. for High-Performance Computers”, SIAM, Philadelphia

    Google Scholar 

  5. Felten, J.E., & Rees, M.J., 1972, “Transfer effects on X-Ray lines in optically thick sources”, A&A, 21, 139-150

    Google Scholar 

  6. Fletcher, C.A.J., 1988, “Computational Techniques for Fluid Dynamics”, Vol, I and II, Springer-Verlag

    Google Scholar 

  7. Font, J.A., 2000, “Numerical Hydrodynamics in General Relativity”, Living Rev. Relativity, 3, 1-81

    MathSciNet  Google Scholar 

  8. Fryxell, B., Olson, K., Ricker, P., et al., 2000, “FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes”, ApJS, 131, 273-334

    Article  Google Scholar 

  9. Gammie, C.F., McKinney, J.C., Tóth, G., 2003, “HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics”, ApJ, 589, 444-457

    Article  Google Scholar 

  10. Hirsch, C., 1990, “Num. Computation of Internal and External Flows”, Vol. I, and II, John Wiley & Sons, New York

    Google Scholar 

  11. Hujeirat, A., Papaloizou, J.C.P., 1998, “Shock formation in accretion columns – a 2D radiative MHD approach”, A&A, 340, 593-604

    Google Scholar 

  12. Hujeirat, A., Rannacher, R., 2001, “On the efficiency and robustness of implicit methods in computational astrophysics”, NewAR, 45, 425-447

    Article  Google Scholar 

  13. Hujeirat, A., Camenzind, M., Livio, M., 2002, “Ion-dominated plasma and the origin of jets in quasars”, A&A, 394, L9-L13

    Article  Google Scholar 

  14. Hujeirat, A., Camenzind, M., Burkert, A., 2002b, “Comptonization and synchrotron emission in 2D accretion flows. I. A new numerical solver for the Kompaneets equation”, A&A, 386, 757-762

    Article  Google Scholar 

  15. Hujeirat, A., Livio, M., Camenzind, M., Burkert, A., 2003, “A model for the jet-disk connection in BH accreting systems”, A&A, 408, 415-430

    Article  Google Scholar 

  16. Hujeirat, A., 2004, “A model for electromagnetic extraction of rotational energy and formation of accretion-powered jets in radio galaxies”, A&A, 416, 423-435

    Article  Google Scholar 

  17. Hujeirat, A., 2004, “A method for enhancing the stability and robustness of explicit schemes in CFD”, New Astronomy Reviews, Vol. 2, Issue 3, 173-193

    Google Scholar 

  18. Katz, J.A., 1976, “Nonrelativistic Compton scattering and models of quasars”, ApJ, 206, 910-916

    Article  Google Scholar 

  19. Iilarinov, A.F., & Sunyaev, R.A., 1972, “Compton scattering by thermal electrons in X-ray sources,” Soviet Astr. -AJ, 16, 45

    Google Scholar 

  20. Kley, W., 1989, “Radiation hydrodynamics of the boundary layer in accretion disks. I – Numerical methods”, A&A, 208, 98-110

    Google Scholar 

  21. Koide, S., Shibata, K., & Kudoh, T., 1999, “Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General Relativistic Magnetohydrodynamic Numerical Code”, ApJ, 522, 727-752

    Article  Google Scholar 

  22. Koide, S., Shibata, K., Kudoh, T., & Meier, D.L., 2002, “Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets”, Science, 195, 1688-1691

    Article  Google Scholar 

  23. Komissarov, S.S., 1999, “A Godunov-type scheme for relativistic magnetohydrodynamics”, MNRAS, 303, 343-366

    Article  Google Scholar 

  24. Levermore, C.D., & Pomraning, G.C., 1981, “A flux-limited diffusion theory”, ApJ, 248, 321-334

    Article  Google Scholar 

  25. Mahadevan, R., Narayan, R., & Yi, I., 1996, “ Harmony of electrons: Cyclotron and Synchrotron emission by thermal electrons in magnetic fields”, ApJ, 465, 327-337

    Article  Google Scholar 

  26. MacCormack, R.W., 1985, “Current status of numerical solutions of Navier-Stokes equations”, AIAA, Paper 81-0110, 1-18

    Google Scholar 

  27. Martí, J.M., Müller, E., 1999, “Numerical hydrodynamics in special relativity”, Living Rev. Relativity, 2, 1-100

    Google Scholar 

  28. Meier, D.L., Koide, S., & Uchida, Y., 2001, “Magnetohydrodynamic Production of Relativistic Jets”, Science, 291, 84-92

    Article  Google Scholar 

  29. Meier, D., 2003, “The theory and simulation of relativistic jet formation: towards a unified model for micro- and macroquasars”, NewAR, 47, 667-672

    Article  Google Scholar 

  30. Mihalas, D., Mihalas, B.W., 1984, “Foundations of radiation hydrodynamics”, Oxford University Press, NY (MM)

    MATH  Google Scholar 

  31. Ouyed, R., Pudritz, R., 1997, “Numerical simulation of astrophysical jets from Keplerian disks. II. episodic outflows”, ApJ, 484, 794-809

    Article  Google Scholar 

  32. Payne, D.G., 1980, “Time-dependent Comptonization – X-ray reverberations”, ApJ, 237, 951-963

    Article  Google Scholar 

  33. Rybiki, G.B., & Lightman, A.P., 1979, “Radiation Processes”, Wiley-Interscience Publication

    Google Scholar 

  34. Saad, Y., van der Vorst, H.A., 2000, “Iterative solution of linear systems in the 20-th century”, J. of Comp. and Appl. Math., 123, 1-33

    Article  MATH  Google Scholar 

  35. Shapiro, S.L., Lightman, A.P., & Eardley, D.M., 1976, “A two-temperature accretion disk model for Cygnus X-1 structure and spectrum”, ApJ, 204, 187-199

    Article  Google Scholar 

  36. Stone, J.M., Norman, M., 1992, “ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I – The hydrodynamic algorithms and tests”, ApJS, 80, 791-818

    Article  Google Scholar 

  37. Tóth, Keppens, R., Botchev, M.A., 1998, “Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests”, A&A, 332, 1159-1170

    Google Scholar 

  38. Trottenberg, U., 2001, in Multigrid, ed.: Trottenberg, U., Oosterlee, C., Schüller, A., Acad. Press, London

    Google Scholar 

  39. Uchida, Y., Nakamura, M., Hirose, S., Uemura, S., 1999, “Magnetodynamic formation of jets in accretion process of magnetized mass onto the central gravitator”, Ap&SS, 264, 195-212

    Article  MATH  Google Scholar 

  40. De Villiers, J.-P., & Hawley, J.F., 2003, “A Numerical Method for General Relativistic Magnetohydrodynamics”, ApJ, 589, 458-480

    Article  Google Scholar 

  41. Ziegler, U., 1998, “NIRVANA+: An adaptive mesh refinement code for gas dynamics and MHD”, Comp. Phys. Comm., 109, 111-123

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guido Kanschat Erik Meinköhn Rolf Rannacher Rainer Wehrse

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hujeirat, A. (2009). A Problem-Orientable Numerical Algorithm for Modeling Multi-Dimensional Radiative MHD Flows in Astrophysics – the Hierarchical Solution Scenario. In: Kanschat, G., Meinköhn, E., Rannacher, R., Wehrse, R. (eds) Numerical Methods in Multidimensional Radiative Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85369-5_8

Download citation

Publish with us

Policies and ethics