Skip to main content

Improved Separations between Nondeterministic and Randomized Multiparty Communication

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2008, RANDOM 2008)

Abstract

We exhibit an explicit function f : {0, 1}n →{0,1} that can be computed by a nondeterministic number-on-forehead protocol communicating O(logn) bits, but that requires n Ω(1) bits of communication for randomized number-on-forehead protocols with k = δ·logn players, for any fixed δ< 1. Recent breakthrough results for the Set-Disjointness function (Sherstov, STOC ’08; Lee Shraibman, CCC ’08; Chattopadhyay Ada, ECCC ’08) imply such a separation but only when the number of players is k < loglogn.

We also show that for any k = A loglogn the above function f is computable by a small circuit whose depth is constant whenever A is a (possibly large) constant. Recent results again give such functions but only when the number of players is k < loglogn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for the maximal independent set problem. Journal of Algorithms 7, 567–583 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beame, P., David, M., Pitassi, T., Woelfel, P.: Separating deterministic from nondet, nof multiparty communication complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 134–145. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory (preliminary version). In: FOCS, pp. 337–347. IEEE, Los Alamitos (1986)

    Google Scholar 

  4. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. System Sci. 45(2), 204–232 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inform. Process. Lett. 63(5), 257–261 (1997)

    Article  MathSciNet  Google Scholar 

  6. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for lovász–schrijver systems and beyond follow from multiparty communication complexity. SIAM J. Comput. 37(3), 845–869 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chattopadhyay, A., Ada, A.: Multiparty communication complexity of disjointness. ECCC, Technical Report TR08-002 (2008)

    Google Scholar 

  8. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: STOC (1983)

    Google Scholar 

  9. Chor, B., Goldreich, O.: On the power of two-point based sampling. Journal of Complexity 5(1), 96–106 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chattopadhyay, A.: Discrepancy and the power of bottom fan-in in depth-three circuits. In: FOCS, October 2007, pp. 449–458. IEEE, Los Alamitos (2007)

    Google Scholar 

  11. Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAM J. Discrete Math. 6(1), 110–123 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ford, J., Gál, A.: Hadamard tensors and lower bounds on multiparty communication complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1163–1175. Springer, Heidelberg (2005)

    Google Scholar 

  13. Gutfreund, D., Viola, E.: Fooling parity tests with parity gates. In: Jansen, K., Khanna, S., Rolim, J., Ron, D. (eds.) RANDOM 2004. LNCS, vol. 3122, pp. 381–392. Springer, Heidelberg (2004)

    Google Scholar 

  14. Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. Comput. Complexity 1(2), 113–129 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields of characteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 672–683. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  17. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnability. J. Assoc. Comput. Mach. 40(3), 607–620 (1993)

    MATH  MathSciNet  Google Scholar 

  18. Lee, T., Shraibman, A.: Disjointness is hard in the multi-party number on the forehead model. In: CCC. IEEE, Los Alamitos (2008)

    Google Scholar 

  19. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. In: STOC, pp. 235–243. ACM Press, New York (1990)

    Google Scholar 

  20. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Computational Complexity 4, 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM J. Comput. 22(1), 211–219 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Paturi, R.: On the degree of polynomials that approximate symmetric boolean functions (preliminary version). In: STOC, pp. 468–474. ACM, New York (1992)

    Google Scholar 

  24. Razborov, A.A.: Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the logical addition function. Mat. Zametki 41(4), 598–607, 623 (1987)

    MathSciNet  Google Scholar 

  25. Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Comput. Complexity 9(2), 113–122 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Razborov, A.: Quantum communication complexity of symmetric predicates. Izvestiya: Mathematics 67(1), 145–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Razborov, A., Wigderson, A.: \(n\sp {\Omega(\log n)}\) lower bounds on the size of depth-3 threshold circuits with AND gates at the bottom. Inform. Process. Lett. 45(6), 303–307 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sherstov, A.: Separating AC0 from depth-2 majority circuits. In: STOC 2007: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (2007)

    Google Scholar 

  29. Sherstov, A.: The pattern matrix method for lower bounds on quantum communication. In: STOC (2008)

    Google Scholar 

  30. Sherstov, A.A.: Communication lower bounds using dual polynomials. Electronic Colloquium on Computational Complexity, Technical Report TR08-057 (2008)

    Google Scholar 

  31. Viola, E., Wigderson, A.: Norms, xor lemmas, and lower bounds for GF(2) polynomials and multiparty protocols. In: CCC. IEEE, Los Alamitos (2007); Theory of Computing (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

David, M., Pitassi, T., Viola, E. (2008). Improved Separations between Nondeterministic and Randomized Multiparty Communication. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics