Skip to main content

Monadic Second Order Logic on Graphs with Local Cardinality Constraints

  • Conference paper
Mathematical Foundations of Computer Science 2008 (MFCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5162))

Abstract

We show that all problems of the following form can be solved in polynomial time for graphs of bounded treewidth: Given a graph G and for each vertex v of G a set α(v) of non-negative integers. Is there a set S of vertices or edges of G such that S satisfies a fixed property expressible in monadic second order logic, and for each vertex v of G the number of vertices/edges in S adjacent/incident with v belongs to the set α(v)? A wide range of problems can be formulated in this way, for example Lovász’s General Factor Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asahiro, Y., Miyano, E., Ono, H.: Graph classes and the complexity of the graph orientation minimizing the maximum weighted outdegree. In: Proceedings of CATS 2008, Computing: The Australasian Theory Symposium. Conferences in Research and Practice in Information Technology, vol. 77, pp. 97–106. Australian Computer Society (2008)

    Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1-2), 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Fomin, F.V.: Equitable colorings of bounded treewidth graphs. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 180–190. Springer, Heidelberg (2004); Theoret. Comput. Sci. 349(1), pp. 22–30, (Full version published, 2005)

    Google Scholar 

  6. Cornuéjols, G.: General factors of graphs. J. Combin. Theory Ser. B 45(2), 185–198 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B.: Recognizability and second-order definability for sets of finite graphs. Technical Report I-8634, Université de Bordeaux (1987)

    Google Scholar 

  8. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of theoretical computer science, vol. B, pp. 193–242. Elsevier Science Publishers, North-Holland, Amsterdam (1990)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  11. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  12. Kostochka, A.V., Nakprasit, K., Pemmaraju, S.V.: On equitable coloring of d-degenerate graphs. SIAM J. Discrete Math. 19(1), 83–95 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lih, K.-W.: The equitable coloring of graphs. In: Handbook of combinatorial optimization, vol. 3, pp. 543–566. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  14. Lovász, L.: The factorization of graphs. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pp. 243–246. Gordon and Breach, New York (1970)

    Google Scholar 

  15. Lovász, L.: The factorization of graphs. II. Acta Math. Acad. Sci. Hungar. 23, 223–246 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meyer, W.: Equitable coloring. Amer. Math. Monthly 80, 920–922 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  18. Rose, D.J.: On simple characterizations of k-trees. Discrete Math. 7, 317–322 (1974)

    MATH  MathSciNet  Google Scholar 

  19. Samer, M., Szeider, S.: Tractable cases of the extended global cardinality constraint. In: Proceedings of CATS 2008, Computing: The Australasian Theory Symposium. Conferences in Research and Practice in Information Technology, vol. 77, pp. 67–74. Australian Computer Society (2008)

    Google Scholar 

  20. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Systems Theory 2, 57–81 (1968)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward Ochmański Jerzy Tyszkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szeider, S. (2008). Monadic Second Order Logic on Graphs with Local Cardinality Constraints. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85238-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85237-7

  • Online ISBN: 978-3-540-85238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics