Skip to main content

A Robust Class of Regular Languages

  • Conference paper
Book cover Mathematical Foundations of Computer Science 2008 (MFCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5162))

Abstract

In this survey paper, we present known results and open questions on a proper subclass of the class of regular languages. This class, denoted by \(\mathcal{W}\), is especially robust: it is closed under union, intersection, product, shuffle, left and right quotients, inverse of morphisms, length preserving morphisms and commutative closure. It can be defined as the largest positive variety of languages not containing the language (ab)*. It admits a nontrivial algebraic characterization in terms of finite ordered monoids, which implies that \(\mathcal{W}\) is decidable: given a regular language, one can effectively decide whether or not it belongs to \(\mathcal{W}\). We propose as a challenge to find a constructive description and a logical characterization of \(\mathcal{W}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, J.: Finite semigroups and universal algebra. Series in Algebra, vol. 3. World Scientific, Singapore (1994)

    Google Scholar 

  2. Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and examples. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and Groups, pp. 73–117. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  3. Bouajjani, A., Muscholl, A., Touili, T.: Permutation Rewriting and Algorithmic Verification. Information and Computation 205(2), 199–224 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cano Gómez, A.: Semigroupes ordonnés et opérations sur les langages rationnels, PhD thesis, Université Paris 7 and Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2003)

    Google Scholar 

  5. Cano Gomez, A., Guaiana, G., Pin, J.-E.: When does partial commutative closure preserve regularity? In: 35th ICALP. Springer, Heidelberg (2008)

    Google Scholar 

  6. Cano Gómez, A., Pin, J.-E.: On a conjecture of Schnoebelen. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 35–54. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Cano Gómez, A., Pin, J.-E.: Shuffle on positive varieties of languages. Theoret. Comput. Sci. 312, 433–461 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1976)

    MATH  Google Scholar 

  9. Ésik, Z.: Extended temporal logic on finite words and wreath products of monoids with distinguished generators. In: DLT 2002. LNCS, vol. 2450, pp. 43–58. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Ésik, Z., Simon, I.: Modeling Literal Morphisms by Shuffle. Semigroup Forum 56, 225–227 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gehrke, M., Grigorieff, S., Pin, J.-E.: Duality and equational theory of regular languages. In: 35th ICALP. Springer, Heidelberg (2008)

    Google Scholar 

  12. Perrot, J.-F.: Variétés de langages et operations. Theoret. Comput. Sci. 7, 197–210 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pin, J.-E.: Varieties of formal languages. North Oxford, London and Plenum, New-York (1986) (Translation of Variétés de langages formels, Masson, 1984)

    MATH  Google Scholar 

  14. Pin, J.-E.: Finite semigroups and recognizable languages: an introduction. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and Groups, pp. 1–32. Kluwer academic publishers, Dordrecht (1995)

    Google Scholar 

  15. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics (Izvestija vuzov.Matematika) 39, 80–90 (1995)

    MathSciNet  Google Scholar 

  16. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of formal languages, ch. 10, vol. 1, pp. 679–746. Springer, Heidelberg (1997)

    Google Scholar 

  17. Pin, J.-E., Weil, P.: A Reiterman theorem for pseudovarieties of of finite first-order structures. Algebra Universalis 35, 577–595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pin, J.-E., Weil, P.: Semidirect products of ordered semigroups. Communications in Algebra 30, 149–169 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Polák, L.: Operators on classes of regular languages. In: Gomes, G., Pin, J.-E., Silva, P. (eds.) Semigroups, Algorithms, Automata and Languages (Coimbra, 2001), pp. 407–422. World Scientific Publisher, River Edge, NJ (2002)

    Google Scholar 

  20. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14, 1–10 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reutenauer, C.: Sur les variétés de langages et de monoïdes. In: Theoretical computer science (Fourth GI Conf., Aachen), vol. 67, pp. 260–265. Springer, Berlin (1979)

    Google Scholar 

  22. Straubing, H.: Recognizable Sets and Power Sets of Finite Semigroups. Semigroup Forum 18, 331–340 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward Ochmański Jerzy Tyszkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez, A.C., Pin, JÉ. (2008). A Robust Class of Regular Languages. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85238-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85237-7

  • Online ISBN: 978-3-540-85238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics